Monitoring system of electricity quality in decentralized electricity supply systems

Authors

  • Евгений Тимофеевич Володарский National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine
  • Анатолій Васильович Волошко National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0002-6282-1096

DOI:

https://doi.org/10.15587/1729-4061.2014.24890

Keywords:

electricity quality, orthogonal wavelet transforms, decentralized electricity supply systems, distributed energy sources

Abstract

Considering the ever-growing demand for electricity, there is a need to introduce new generating facilities - distributed energy sources. This in turn leads to the transformation of the centralized electricity supply system - electricity flow goes from the center to the consumer, into an active decentralized system, characterized by new energy and information flows.

All this points to the need for a new information infrastructure, which should contain a monitoring system of electricity supply mode parameters. Herewith, it is necessary to note the following. Taking into account technical characteristics of new energy sources (their instability), electricity quality is one of the most significant factors that affect the efficiency of both electrical systems, and consumers.

Using existing methods for determining the presence of electricity quality distortion is not acceptable for building real-time monitoring system, based on them. An approach to building real-time monitoring system of electricity quality, which lies in constructing a spatial-temporal distribution of the information signal and the subsequent orthogonal analysis of frequency-temporal changes in its spectral components is presented. Introducing a generalized factor for determining the presence of electricity quality distortion has allowed to carry out its real-time monitoring.

Author Biographies

Евгений Тимофеевич Володарский, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37, Prospect Peremohy, 03056, Kyiv-56

Dr. Of Sci. (Engineering), Professor Department of Automation experimental studies

Анатолій Васильович Волошко, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37, Prospect Peremohy, 03056, Kyiv-56

PhD in engeneering science

Department of Electricity

References

  1. ГОСТ Р 51317.4.30-2008 (МЕК 61000-4-30:2008) Електромагнітна сумісність (ЕМС) [Текст] / Частина 4-30. Методи випробувань та вимірювань. Методи вимірювання якості електричної енергії, 2008. – 59 с.
  2. ГОСТ 13109–97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения [Текст] / Минск: ИПК. Изд-во стандартов, 1998. – 30 с.
  3. Office of Electricity Delivery and Energy reliability by the National Energy Technology Laboratory. Provides power quality for the digital economty. [Electronic resource] / Available at: http://www.netldoe.gov/research/energy-efficiency/energy-delivery/smart-grid.
  4. Стогній, Б. С. Інтелектуальні електричні мережі електроенергетичних систем та їхнє технологічне забезпечення [Текст] / Б. С. Стогній, О. В. Кириленко, С. П. Денисюк // Технічна електродинаміка. – 2010. – № 6. – С. 44–50.
  5. Шон, Ф. Ч. Исследования и оценка эффективности повышения качества электроэнергии при интеграции распределенных генераций с системами электроснабжения на нескольких новых показателях [Текст] // Вестник ИрГТУ. – 2013. – № 7 (78). – С. 149–153.
  6. Праховник, А. В. Перспективы и пути развития распределенной генерации в Украине [Текст] / А. В. Праховник, В. А Попов, Е. С. Ярмолюк и др. // Енергетика: економіка, технології, екологія. – 2012. – № 2. – С. 7–14.
  7. Масленников, Г. К. Обеспечение качества электрической энергии в системах электроснабжения общего назначения [Текст] / Г. К. Масленников, Е. В. Дубинский // Энергосбережение. – 2002. – № 1. – С. 56–61.
  8. Куско, А. Качество электрическойэнергии [Текст] / А. Куско, М. Томпсон. – М.: Додэка-ХХІ, 2008. – 336 с.
  9. Dash, P. Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman Filter [Text] / P. Dash, A. Pradham, G. Pauda // IEEE Trans. on Power Delivery. – 1999. – Vol. 14, № 3. – P. 230–238.
  10. Залмазон, Л. А. Преобразования Фурье, Уолша, Хаара и их применение в управлении, связи и других областях [Текст] / Л. А. Залмазон. – М.: Наука. Гл. ред. физ.-мат. лит. 1989. – 496 с.
  11. Волошко, А. В. Устранение влияния нестабильности частоты сети на точность определения качества электрической энергии [Текст] / А. В. Волошко, О. В. Коцарь // Техническая электродинамика. –1994. – № 4. – С. 73–77.
  12. Марпл, С. Л. Цифровой спектральный анализ и его приложения [Текст] / С. Л. Марпл. – М.: Мир, 1990. – 584 с.
  13. Блейхут, Р. Быстрые алгоритмы цифровой обработки сигналов: Пер. с англ. [Текст] / Р. Блейхут. – М.: Мир, 1989. – 448 с.
  14. Andria, G. A Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy [Text] / G. Andria, H. Savino, A. Trotta // Transaction on Instrumentation and Measurement. – 1989. – Vol. 38, № 4. – P. 856–863.
  15. Волошко, А. В. Интерполяция и повышение точности проведения гармонического и спектрального анализа [Текст] / А. В. Волошко // Техническая электродинамика. – 1991. – № 3. – С. 8–13.
  16. Abdel-Galil, T. Power quality disturbance classification using the inductive inference approach [Text] / T. Abdel-Galil, M. Kamel, A. M. Youssed // IEEE Trans. on Power Delivery. – 2004. – Vol. 19, №. 4. – Р. 1812–1818.
  17. He, H. A self-organizing learning array system for power Quality classification based on wavelet transform [Text] / H. He, J. A. Starzyk // IEEE Trans. on Power Delivery. – 2006. – Vol. 21, № 1. – P. 286–295.
  18. Ribeiro, R. Wavelet Transform: An Advanced Tool for Analysing non Stationary Harmonic Distortion in Power Systems [Text] : Proc. Of IEEE intern. conf. / R. Ribeiro // Harmonic in Power Systems, 1994. – P. 452–457.
  19. Karthikeyan, M. Wavelet Support Vector Machine Approach for classification [Text] / M. Karthikeyan, V. Malathi // Int. Journal of Recent Trends in Engineering. – 2009. – Vol. 1, № 3. –P. 211–220.
  20. Hyvarinen, A. Fast and robust fixed-point algorithms for independend component analysis [Text] / A. Hyvarinen // IEEE Trans. Neural Networks. – 1999. – Vol. 10. –P. 626–634.
  21. Ferreira, D. D. ICA-based for Power Quality Disturbance Analysis [Text] / D. D. Ferreira, S. M. Seixas, A. S. Cerqueira // Intelligent System Application to Power Systems. ISAP’09. 15-th Int. Conference, 2009. – P. 1–6.
  22. Yang, H. T. A de-noising sheme for enhancing wavelet-based power quality monitoring system [Text] / H. T. Yang, L. Chung, C. C. Liao // IEEE on Power Delivery. – 2001. – Vol. 16, Issue 3. – P. 353–360.
  23. Dwivedi, V. D. De-noising Techniques with Change-Point Approach for Wavelet-based Power Quality Monitoring [Text] / V. D. Dwivedi, S. N. Singh // IEEE Trans. On Power Delivery. – 2009. – Vol. 24, № 3. – P. 1719–1727.
  24. Большев, П. Н. Таблицы математической статистики [Текст] / П. Н. Большев, Н. В. Смирнов. – М.: Наука, 1983. – 416 с.
  25. Zwe-Lee, Gaing Wavelet-based neural network for Power Disturbance recognition and classification [Text] / Gaing Zwe-Lee // IEEE Trans. On Power Delivery. – 2004. – Vol. 19, № 4. – P. 1560–1567.
  26. Emmanouil, S. Expert system for classification and analysis of Power system event’s [Text] / S. Emmanouil. M. H. J. Bollen, I. Y. H. Gu //IEEE Trans. On Power Delivery. – 2002. – Vol. 17, № 2. – P. 423–428.
  27. Bizjak, B. Classification of Power Disturbances using Fuzzy Logic [Text] / B. Bizjak, P. Planinsic // Power Electronics and Motion Control Conference. – 2006. EPE-PENC 12 th Int., 2006. – P. 1356–1360.
  28. Axelberg, P. Support Vector Machine for Classification of Voltage Disturbances [Text] / P. Axelberg, I. Y.-H. Gu, M. H. Bollen // IEEE Trans. on Power Delivery. – 2007. – Vol. 22, № 3. – P. 1297–1303.
  29. Janic, P. Automated classification of Power-quality disturbances using SVM and RBF network [Text] / P. Janic // IEEE Trans. On Power Delivery. – 2006. – Vol. 21, № 3. – P. 1663–1669.
  30. Grouse, M. S. Wavelet-based statistical signal processing using hidden Markov models [Text] / M. S. Grouse, R. D. Nowak, R. G. Baraniuk // IEEE Trans. Signal Processing. – 1998. – Vol. 46, № 4. – P. 886–902.
  31. Dash, P. K. Classification of Power Disturbances using a Fuzzy expert system and a Fourier linear combiner [Text] / P .K. Dash, K. S. Mishra, M. M. A. Salama // IEEE Trans. оn Power Delivery. – 2000. – Vol. 15, № 2. – P. 472–477.
  32. Mallat, S. A. A Theory for multiresolution signal decomposition: The wavelet representation [Text] / S. A. Mallat // IEEE Trans. Pattern Ana. Machine Intell. – 1989. – Vol. 11. – P. 674–693.
  33. GOST R 51317.4.30-2008 (MEK 61000-4-30:2008) Elektromagnitna symicnict (EMC) (2008).Tcastuna 4-30. Metodu vuprobyvan ta vumirjuvan. Metodu vumirjuvanja jacosti elektrutchnojien energii, 59.
  34. GOST 13109-97 (1998) .Elektrutcheskaja energija. Sovmestimostj technitcheskix sredstv elektromagnitnaja. Normu katchestva elektrutchesko jenergii v sustemax elektrosnabjenija obtchego naznatchenija. Minsk: IPK. Izd.standartov, 30.
  35. Office of Electricity Delivery and Energy reliability by the National Energy Technology Laboratory. Provides power quality for the digital economty. Available at: http://www.netldoe.gov/research/energy-efficiency/energy-delivery/smart-grid.
  36. Stognij, B. S., Kirilenko, O. V., Denisjuk, S. P. (2010). Intelektyalni elektrutchni meredji elektroenergetutchnux sustem ta ixne technologitchne zabezpetcgenja. Technitchnaelektrodunamika 6, 44–50.
  37. Schon, F. Tch. (2013). Issledovanija i ozenka effektivnosti povuschenija katchestva elektroenergii pri integrazii raspredelennuch generazij v sistemamu elektrosnabjenija na neskol’kich novuch pokazateljach. Vestnik IrGTU. 7 (78). 149–153. (Rus).
  38. Prachovnik, A. V., Popov, V. A., Yarmoljuk, E. S. (2012). Perspektivu i pyti razvitija raspredelennoj generazii v Ukraine. Energetika: ekonomika, technjlogii, ekologija, 2, 7–14. (Rus).
  39. Maslennikov, G. K., Dubinskij, E. B. (2002). Obespetchenie katchestva elektritcheskoj energii v sistemach elektrosnabjenija objego naznatchenija. Energosberejenie. 1, 56–61. (Rus).
  40. Kusko, A., Tompson, M. (2008). Katchestvo ekektritcheskoj energii. M.:Dodeka-XXI. 336. (Rus).
  41. Dash, P., Pradham, A., Pauda, G. (1999). Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman Filter. IEEE Trans. on Power Delivery, 14, 3, 230–238. (Eng).
  42. Zalmazon, L. A. (1989). Preobrazovanie Fur’e, Uolscha, Xaara i ich primenenie v ypravlenii, svjazi i drugich oblastjach. M.: Nauka. Gl. Red. Fiz-mat. Lit, 496. (Rus).
  43. Voloschko, A. V., Kotzar, O. V. (1994). Ustranenie vlijanija nestabil’nosti tchastoty seti na tochnost opredelenija a katchestva elektritcheskoj energii. Technitcheskaja elektrodinamika. 4, 73–77. (Rus).
  44. Marpl, S. L. (1990). Zifrovoj spektralnij analiz i ego prilojenija. Mir. 584. (Rus).
  45. Blejchut, R. (1989). Bistrie algoritmy zifrovoj obrabotk isignalov: Per. S Angl. Mir. 448. (Rus).
  46. Andria, G. A, Savino, H., Trotta, A. (1989). Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy. Transaction on Instrumentation and Measurement, 38, 4, 856–863. (Eng).
  47. Voloschko, A. V. (1991). Interpoljazija i povischenie tochnosti provedenija garmonicheskogo i spektral’nogo analizu. Technitcheskaja elektrodinamika, 4, 73–77. (Rus).
  48. Abdel-Galil, T., Kamel, A. M., Youssed, A. M. (2004). Power quality disturbance classification using the inductive inference approach. IEEE Trans. On Power Delivery, 19, 4, 1812–1818. (Eng).
  49. He, H., Starzyk, A. M. (2006). A self-organizing learning array system for power Quality classification based on wavelet transform. IEEE Trans. On Power Delivery. 21, 1, 286–295. (Eng).
  50. Ribeiro, R. (1994). Wavelet Transform: An Advanced Tool for Analysing non Stationary Harmonic Distortion in Power Systems. Proc. Of IEEE Intern. Conference on Harmonic in Power Systems.452–457. (Eng).
  51. Karthikeyan, M., Malathi, V. (2009). Wavelet Support Vector Machine Approach for classification. Int. Journal of Recent Trends in Engineering. 211–220. (Eng).
  52. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independend component analysis. IEEE Trans. Neural Networks.10, 626–634. (Eng).
  53. Ferreira, D. D., Seixas, S. M., Cerqueira, A. S .(2009). ICA-based for Power Quality Disturbance Analysis.Intelligent System Application to Power Systems. ISAP’09. 15 th Int. Conference. 1–6. (Eng).
  54. Yang, H. T., Chung, L., Liao, C. C. (2001). A de-noising sheme for enhancing wavelet-based power quality monitoring system. IEEE on Power Delivery, 16, 3, 353–360. (Eng).
  55. Dwivedi, V. D., Singh, S. N. (2009). De-noising Techniques with Change-Point Approach for Wavelet-based Power Quality Monitoring. IEEE Trans. On Power Delivery, 24, 3, 1719–1727. (Eng).
  56. Bol’schev, P. N., Smirnov, N. V. (1983). Tablizy matematicheskoj statistiky. Nauka. 416. (Rus).
  57. Zwe-Lee, Gaing (2004). Wavelet-based neural network for Power Disturbance recognition and classification. IEEE Trans. on Power Delivery, 19, 4, 1560–1567. (Eng).
  58. Emmanouil, S., Bollen, M. H. J., Gu, I. Y. U. (2002). Expert system for classification and analysis of Power system event’s. IEEE Trans. On Power Delivery, 17, 2, 423–428. (Eng).
  59. Bizjak, B., Planinsic, P. (2006) Classification of Power Disturbances using Fuzzy Logic. Power Electronics and Motion Control Conference. – EPE-PENC 12 th Int., 1356–1360. (Eng).
  60. Axelberg, P., Gu, I. Y.-H., Bollen, M. H. (2007). Support Vector Machine for Classification of Voltage Disturbances. IEEE Trans. On Power Delivery, 22, 3, 1297–1303. (Eng).
  61. Janic, P. (2006). Automated classification of Power-quality disturbances using SVM and RBF network. IEEE Trans. On Power Delivery, 21, 3, 1663–1669. (Eng).
  62. Grouse, M. S., Nowak, R. D., Baraniuk, R. G. (1998). Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Processing, 46, 4, 886–902. (Eng).
  63. Dash, P. K., Mishra, K. S.,Salama, M. M. A. (2000). Classification of Power Disturbances using a Fuzzy expert system and a Fourier linear combiner. IEEE Trans. on Power Delivery, 15, 2, 472–477.
  64. Mallat, S. A. (1989). A Theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Ana. Machine Intell., 11, 674–693. (Eng).

Published

2014-06-24

How to Cite

Володарский, Е. Т., & Волошко, А. В. (2014). Monitoring system of electricity quality in decentralized electricity supply systems. Eastern-European Journal of Enterprise Technologies, 3(8(69), 10–17. https://doi.org/10.15587/1729-4061.2014.24890

Issue

Section

Energy-saving technologies and equipment