Analyzing the accuracy of detecting steganograms formed by adaptive steganographic methods when using artificial neural networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.251350

Keywords:

stegoanalysis, digital images, convolutional neural networks, autoencoders

Abstract

This paper reports a comparative analysis of accuracy in the detection of steganograms formed according to adaptive steganographic methods, using steganography detectors based on common and specialized types of artificial neural networks. The results of the review of modern convolutional neural networks applied for the tasks of digital image stegoanalysis have established that the accuracy of operating the steganography detectors based on these networks is significantly compromised when processing image packets characterized by a significant variability of statistical parameters.

The performance accuracy of steganography detectors based on the modern statistical model of container images maxSRMd2 has been investigated, as well as on the latest convolutional and «hybrid» artificial neural networks, in particular, GB-Ras and ASSAF networks, when detecting steganograms formed according to the adaptive steganographic methods HUGO and MiPOD. It was established that the use of the statistical model maxSRMd2 makes it possible to significantly (up to 30 %) improve the accuracy of steganogram detection in the case of analyzing those images that are characterized by a high level of natural noise. It was found that the use of the ASSAF network makes it possible to significantly (up to 35 %) reduce an error of steganogram detection compared to current steganography detectors based on the GB-Ras network and the maxSRMd2 statistical model. It was determined that the high accuracy of the ASSAF network-based steganography detector is maintained even in the most difficult case of image processing with high noise and poor filling of the container image with stegodata (less than 10 %).

The results reported here are of theoretical interest for designing high-precision steganography detectors capable of working under conditions of high variability in image parameters.

Author Biographies

Dmytro Progonov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD, Associate Professor

Department of Information Security

Mariia Yarysh, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Department of Information Security

References

  1. Yaacoub, J.-P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., Malli, M. (2020). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77, 103201. doi: https://doi.org/10.1016/j.micpro.2020.103201
  2. Kopeytsev, V. (2020). Steganography in attacks on industrial enterprises. Kaspersky Lab. Available at: https://ics-cert.kaspersky.com/media/KASPERSKY_Steganography_in_attacks_EN.pdf
  3. Tan, S., Li, B. (2014). Stacked convolutional auto-encoders for steganalysis of digital images. Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. doi: https://doi.org/10.1109/apsipa.2014.7041565
  4. Progonov, D. (2021). Performance Analysis of Stego Images Detection Using Shallow Denoising Autoencoders. 2021 IEEE 8th International Conference on Problems of Infocommunications. Science and Technology. Kharkiv.
  5. Fridrich, J. (2009). Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781139192903
  6. Konakhovych, H. F., Prohonov, D. O., Puzyrenko, O. Yu. (2018). Kompiuterna stehanohrafichna obrobka y analiz multymediinykh danykh. Kyiv: Tsentr uchbovoi literatury, 558.
  7. Filler, T., Fridrich, J. (2010). Gibbs Construction in Steganography. IEEE Transactions on Information Forensics and Security, 5 (4), 705–720. doi: https://doi.org/10.1109/tifs.2010.2077629
  8. Sedighi, V., Cogranne, R., Fridrich, J. (2016). Content-Adaptive Steganography by Minimizing Statistical Detectability. IEEE Transactions on Information Forensics and Security, 11 (2), 221–234. doi: https://doi.org/10.1109/tifs.2015.2486744
  9. Filler, T., Fridrich, J. (2011). Design of adaptive steganographic schemes for digital images. Media Watermarking, Security, and Forensics III. doi: https://doi.org/10.1117/12.872192
  10. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J. (2014). Selection-channel-aware rich model for Steganalysis of digital images. 2014 IEEE International Workshop on Information Forensics and Security (WIFS). doi: https://doi.org/10.1109/wifs.2014.7084302
  11. Avcibas, I., Memon, N., Sankur, B. (2003). Steganalysis using image quality metrics. IEEE Transactions on Image Processing, 12 (2), 221–229. doi: https://doi.org/10.1109/tip.2002.807363
  12. Kodovsky, J., Fridrich, J., Holub, V. (2012). Ensemble Classifiers for Steganalysis of Digital Media. IEEE Transactions on Information Forensics and Security, 7 (2), 432–444. doi: https://doi.org/10.1109/tifs.2011.2175919
  13. Pevny, T., Bas, P., Fridrich, J. (2010). Steganalysis by Subtractive Pixel Adjacency Matrix. IEEE Transactions on Information Forensics and Security, 5 (2), 215–224. doi: https://doi.org/10.1109/tifs.2010.2045842
  14. Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (7), 711–720. doi: https://doi.org/10.1109/34.598228
  15. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge: The MIT Press, 1104.
  16. Miche, Y., Bas, P., Lendasse, A. (2010). Using multiple re-embeddings for quantitative steganalysis and image reliability estimation. TKK reports in information and computer science. Aalto University School of Science and Technology, 19. Available at: http://lib.tkk.fi/Reports/2010/isbn9789526032504.pdf
  17. Fridrich, J., Kodovsky, J. (2012). Rich Models for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security, 7 (3), 868–882. doi: https://doi.org/10.1109/tifs.2012.2190402
  18. Holub, V., Fridrich, J. (2013). Random Projections of Residuals for Digital Image Steganalysis. IEEE Transactions on Information Forensics and Security, 8 (12), 1996–2006. doi: https://doi.org/10.1109/tifs.2013.2286682
  19. Song, X., Liu, F., Yang, C., Luo, X., Zhang, Y. (2015). Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters. Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security. doi: https://doi.org/10.1145/2756601.2756608
  20. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. Cambridge: The MIT Press, 800.
  21. Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer, 497. doi: https://doi.org/10.1007/978-3-319-94463-0
  22. Qian, Y., Dong, J., Wang, W., Tan, T. (2015). Deep learning for steganalysis via convolutional neural networks. Media Watermarking, Security, and Forensics 2015. doi: https://doi.org/10.1117/12.2083479
  23. Xu, G., Wu, H.-Z., Shi, Y.-Q. (2016). Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Processing Letters, 23 (5), 708–712. doi: https://doi.org/10.1109/lsp.2016.2548421
  24. Ye, J., Ni, J., Yi, Y. (2017). Deep Learning Hierarchical Representations for Image Steganalysis. IEEE Transactions on Information Forensics and Security, 12 (11), 2545–2557. doi: https://doi.org/10.1109/tifs.2017.2710946
  25. Yedroudj, M., Comby, F., Chaumont, M. (2018). Yedroudj-Net: An Efficient CNN for Spatial Steganalysis. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi: https://doi.org/10.1109/icassp.2018.8461438
  26. Boroumand, M., Chen, M., Fridrich, J. (2019). Deep Residual Network for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security, 14 (5), 1181–1193. doi: https://doi.org/10.1109/tifs.2018.2871749
  27. Zhang, R., Zhu, F., Liu, J., Liu, G. (2018) Efficient feature learning and multi-size image steganalysis based on CNN. arXiv.org. Available at: https://arxiv.org/abs/1807.11428
  28. Ker, A. D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T. et. al. (2013). Moving steganography and steganalysis from the laboratory into the real world. Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security - IH&MMSec ’13. doi: https://doi.org/10.1145/2482513.2482965
  29. Bas, P., Filler, T., Pevný, T. (2011). ”Break Our Steganographic System”: The Ins and Outs of Organizing BOSS. Lecture Notes in Computer Science, 59–70. doi: https://doi.org/10.1007/978-3-642-24178-9_5
  30. He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (9), 1904–1916. doi: https://doi.org/10.1109/tpami.2015.2389824
  31. Reinel, T.-S., Brayan, A.-A. H., Alejandro, B.-O. M., Alejandro, M.-R., Daniel, A.-G., Alejandro, A.-G. J. et. al. (2021). GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis. IEEE Access, 9, 14340–14350. doi: https://doi.org/10.1109/access.2021.3052494
  32. Cohen, A., Cohen, A., Nissim, N. (2020). ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks. Neural Networks, 131, 64–77. doi: https://doi.org/10.1016/j.neunet.2020.07.022
  33. Butora, J., Yousfi, Y., Fridrich, J. (2021). How to Pretrain for Steganalysis. Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security. doi: https://doi.org/10.1145/3437880.3460395
  34. Reinel, T.-S., Raul, R.-P., Gustavo, I. (2019). Deep Learning Applied to Steganalysis of Digital Images: A Systematic Review. IEEE Access, 7, 68970–68990. doi: https://doi.org/10.1109/access.2019.2918086
  35. Cogranne, R., Giboulot, Q., Bas, P. (2019). The ALASKA Steganalysis Challenge. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. doi: https://doi.org/10.1145/3335203.3335726
  36. Shullani, D., Fontani, M., Iuliani, M., Shaya, O. A., Piva, A. (2017). VISION: a video and image dataset for source identification. EURASIP Journal on Information Security, 2017 (1). doi: https://doi.org/10.1186/s13635-017-0067-2

Downloads

Published

2022-02-28

How to Cite

Progonov, D., & Yarysh, M. (2022). Analyzing the accuracy of detecting steganograms formed by adaptive steganographic methods when using artificial neural networks. Eastern-European Journal of Enterprise Technologies, 1(9(115), 45–55. https://doi.org/10.15587/1729-4061.2022.251350

Issue

Section

Information and controlling system