Computer modeling in the study of the effect of normalized quantities on the measurement accuracy of the quadratic transformation function

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.254337

Keywords:

redundant methods, measurement equations, accuracy improvement, normalized quantities, reproduction errors of quantities

Abstract

The research of the systems of equations of quantities describing, respectively, 5 and 6 measurement cycles revealed the peculiarities of redundancy formation. It is proved that the normalized temperature T1 has the greatest effect on the measurement result for both systems. In addition, it was found that in both systems, an increase in the reproduction accuracy of the normalized temperature T1 (with a constant reproduction error of T2) does not lead to a significant improvement in the results. Due to this, it can be argued on the use of non-precision normalized sources to reproduce the temperature T1. However, an order of magnitude increase in the reproduction accuracy of both normalized quantities T1 and T2 also increases the measurement accuracy by an order of magnitude. Computer modeling confirmed that for the redundant measurement equation (11) at the ratio Т1=Ті(0.0005•Ті+1) in the range (10÷200) °С, measurement with a relative error (0.01÷0.00003) % is provided. When applying the redundant measurement equation (13), the accuracy increases to 0.0059 % only at the end of the range. Based on the results obtained, it was found that the accuracy of redundant measurements is influenced by the type of equation itself, not their number. Processing of the results based on the redundant measurement equation, by the way, ensures the independence of the measurement result from the influence of absolute values of the transformation function parameters, as well as their deviations from nominal values under the influence of external destabilizing factors.

Thus, there is reason to believe that it is possible to increase the accuracy of measurement in a wide range by observing the ratio between normalized and controlled quantities

Author Biographies

Volodymyr Shcherban’, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Science

Ganna Korogod, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science

Oksana Kolysko, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science

Antonina Volivach, Kyiv National University of Technologies and Design

PhD, Senior Lecturer

Department of Computer Science

Yury Shcherban’, State Higher Educational Establishment "Kyiv College of Light Industry"

Doctor of Technical Sciences, Professor, Head of Department

Department of Light Industry Technologies

Ganna Shchutska, State Higher Educational Establishment "Kyiv College of Light Industry"

Doctor of Technical Sciences, Associate Professor, Director

Department of Light Industry Technologies

References

  1. Shcherban’, V., Kolysko, O., Melnyk, G., Sholudko, M., Shcherban’, Y., Shchutska, G. (2020). Determining tension of yarns when interacting with guides and operative parts of textile machinery having the torus form. Fibres and Textiles, 4, 87–95. Available at: http://vat.ft.tul.cz/2020/4/VaT_2020_4_12.pdf
  2. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2019). Improvement of structure and technology of manufacture of multilayer technical fabric. Fibres and Textiles, 2, 54–63. Available at: http://vat.ft.tul.cz/2019/2/VaT_2019_2_10.pdf
  3. Shcherban’, V., Makarenko, J., Melnyk, G., Shcherban’, Y., Petko, A., Kirichenko, A. (2019). Effect of the yarn structure on the tension degree when interacting with high-curved guide. Fibres and Textiles, 4, 59–68. Available at: http://vat.ft.tul.cz/2019/4/VaT_2019_4_8.pdf
  4. Shi, B., Feng, S., Zhang, Y., Bai, K., Xiao, Y., Shi, L. et. al. (2019). Junction Temperature Measurement Method for SiC Bipolar Junction Transistor Using Base–Collector Voltage Drop at Low Current. IEEE Transactions on Power Electronics, 34 (10), 10136–10142. doi: https://doi.org/10.1109/tpel.2019.2894346
  5. Zyska, T., Boyko, O., Holyaka, R., Hotra, Z., Fechan, A., Ivanyuk, H. et. al. (2018). Functionally integrated sensors of thermal quantities based on optocoupler. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018. doi: https://doi.org/10.1117/12.2501632
  6. Novosyadlyy, S. P., Lutsky, I. M. (2015). Ways to improve the performance of GaAs-sex Schottky transistors (PTSH) and selective-doped heterotransistors (SLGT) for the formation of modern microwave circuits. Physics and Chemistry of Solid State, 16 (2), 413–419. doi: https://doi.org/10.15330/pcss.16.2.413-419
  7. Hidalgo-López, J. A., Fernández-Ramos, R., Romero-Sánchez, J., Martín-Canales, J. F., Ríos-Gómez, F. J. (2018). Improving Accuracy in the Readout of Resistive Sensor Arrays. Journal of Sensors, 2018, 1–12. doi: https://doi.org/10.1155/2018/9735741
  8. Tankevych, Ye. M., Yakovlieva, I. V., Varskyi, G. M. (2016). Increasing the Accuracy of Voltage Measuring Channels of Electrical Power Object Control Systems. Visnyk Vinnytskoho politekhnichnoho instytutu, 1, 79–84. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/download/1880/1880/
  9. Rahimi, A., Kanerva, P., Benini, L., Rabaey, J. M. (2019). Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG Signals. Proceedings of the IEEE, 107 (1), 123–143. doi: https://doi.org/10.1109/jproc.2018.2871163
  10. Huang, P.-C., Rabaey, J. M. (2017). A Bio-Inspired Analog Gas Sensing Front End. IEEE Transactions on Circuits and Systems I: Regular Papers, 64 (9), 2611–2623. doi: https://doi.org/10.1109/tcsi.2017.2697945
  11. Boyko, O., Barylo, G., Holyaka, R., Hotra, Z., Ilkanych, K. (2018). Development of signal converter of thermal sensors based on combination of thermal and capacity research methods. Eastern-European Journal of Enterprise Technologies, 4 (9 (94)), 36–42. doi: https://doi.org/10.15587/1729-4061.2018.139763
  12. Boyko, O. V., Hotra, Z. Y. (2020). Analysis and research of methods of linearization of the transfer function of precision semiconductor temperature sensors. Physics and Chemistry of Solid State, 21 (4), 737–742. doi: https://doi.org/10.15330/pcss.21.4.737-742
  13. Lewis, G., Merken, P., Vandewal, M. (2018). Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature Correction. Sensors, 18 (12), 4087. doi: https://doi.org/10.3390/s18124087
  14. Zhang, J., Qian, W., Gu, G., Mao, C., Ren, K., Wu, C. et. al. (2019). Improved algorithm for expanding the measurement linear range of a four-quadrant detector. Applied Optics, 58 (28), 7741. doi: https://doi.org/10.1364/ao.58.007741
  15. Goumopoulos, C. (2018). A High Precision, Wireless Temperature Measurement System for Pervasive Computing Applications. Sensors, 18 (10), 3445. doi: https://doi.org/10.3390/s18103445
  16. Liu, G., Guo, L., Liu, C., Wu, Q. (2018). Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement. Measurement, 120, 21–27. doi: https://doi.org/10.1016/j.measurement.2018.02.007
  17. Chen, C.-C., Chen, C.-L., Lin, Y. (2016). All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement. Sensors, 16 (2), 176. doi: https://doi.org/10.3390/s16020176
  18. Cuesta-Frau, D., Varela, M., Aboy, M., Miró-Martínez, P. (2009). Description of a PortableWireless Device for High-Frequency Body Temperature Acquisition and Analysis. Sensors, 9 (10), 7648–7663. doi: https://doi.org/10.3390/s91007648
  19. Kondratov, V. T. (2010). Metody izbytochnykh izmereniy: osnovnye opredeleniya i klassifikatsiya. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 3, 220–232. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2010_3/47kon.pdf
  20. Kondratov, V. T. (2016). Fundamental metrology: the theory of the structural analysis of the equations of redundant and super-redundant measurements. The message 1. Measuring and Computing Devices in Technological Processes, 1, 17–26. Available at: http://nbuv.gov.ua/UJRN/vott_2016_1_4
  21. Kondratov, V. T. (2009). Teoriya izbytochnykh izmereniy: universal'noe uravnenie izmereniy. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 5, 116–129. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2009_5/zmist.files/23kon.pdf
  22. Kondratov, V. T. (2015). The theory redundant and super-redundant measurements: super-redundant measurements of resistance of resistors and resistive sensors. The message 1. Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh, 4, 7–22. Available at: http://nbuv.gov.ua/UJRN/vott_2015_4_3
  23. Shcherban, V., Korogod, G., Chaban, V., Kolysko, O., Shcherban’, Y., Shchutska, G. (2019). Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 16–22. doi: https://doi.org/10.15587/1729-4061.2019.160830
  24. Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Y., Shchutska, G. (2020). Computer simulation of multiple measurements of logarithmic transformation function by two approaches. Eastern-European Journal of Enterprise Technologies, 6 (4 (108)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.218517
  25. Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Y., Shchutska, G. (2021). Computer simulation of logarithmic transformation function to expand the range of high-precision measurements. Eastern-European Journal of Enterprise Technologies, 2 (9 (110)), 27–36. doi: https://doi.org/10.15587/1729-4061.2021.227984

Downloads

Published

2022-04-30

How to Cite

Shcherban’, V., Korogod, G., Kolysko, O., Volivach, A., Shcherban’, Y., & Shchutska, G. (2022). Computer modeling in the study of the effect of normalized quantities on the measurement accuracy of the quadratic transformation function. Eastern-European Journal of Enterprise Technologies, 2(5 (116), 6–16. https://doi.org/10.15587/1729-4061.2022.254337

Issue

Section

Applied physics