Optimizing geometric parameters for the rotor of a traction synchronous reluctance motor assisted by partitioned permanent magnets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.254373

Keywords:

synchronous reluctance motor, Nelder-Mead method, finite-element method, partitioned permanent magnets

Abstract

This paper considers partitioning parameters and the mutual arrangement of magnets in the rotor of the traction synchronous-jet engine with permanent partitioned magnets. The synthesis of geometrical parameters for the rotor of a synchronous reluctance motor with partitioned permanent magnets was proposed on the basis of solving the problem of conditional optimization. To solve the synthesis problem, a mathematical model has been built to determine the electromagnetic momentum of a synchronous reluctance motor with partitioned permanent magnets. It is based on the calculation of the electromagnetic momentum of the engine employing the results of a finite-element analysis of the magnetic field in the flat-parallel statement of the problem. The model is implemented in the finite-element analysis FEMM environment and makes it possible to determine the electromagnetic momentum of the engine with a variety of partitioning of permanent magnets. As an analysis problem, it is proposed to use a mathematical model of the magnetic field of the engine. The problem of conditional optimization of the rotor of a synchronous reluctance motor was stated according to the geometric criteria of the rotor. Restrictions are set on geometric, strength indicators, as well as on the level of electromagnetic momentum. The chosen optimization method is the Nelder-Mead method.

Based on the results of solving the problem of synthesizing parameters for the partitioned rotor of the traction motor of trolleybus wheels, it was established that the volume of permanent magnets was reduced by 2.27 times compared to the base structure; their optimal geometric dimensions were determined (5 mm, 5.2 mm, and 5 mm), as well as the distance between them, 17.8 mm and 15.3 mm, and the engine load angle, which is 121.12 electrical degrees.

Based on the results of solving the problem of synthesizing parameters for the partitioned rotor of a trolleybus traction synchronous reluctance motor, its optimal geometric parameters have been determined

Author Biographies

Borys Liubarskyi, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Professor

Department of Electrical Transport and Diesel Locomotives Construction

Dmytro Iakunin, National Technical University "Kharkiv Polytechnic Institute"

PhD, Associate Professor

Department of Electrical Transport and Diesel Locomotives Construction

Oleh Nikonov, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Computer Technologies and Mechatronics

Dmytro Liubarskyi, Kharkiv National Automobile and Highway University

Department of Computer Technologies and Mechatronics

Bagish Yeritsyan, National Technical University "Kharkiv Polytechnic Institute"

PhD

Department of Electrical Transport and Diesel Locomotives Construction

References

  1. Luvishis, A. L. (2017). Asinkhronniy privod: nachalo puti. Lokomotiv, 1 (721), 44–46.
  2. Goolak, S., Gerlici, J., Tkachenko, V., Sapronova, S., Lack, T., Kravchenko, K. (2019). Determination of Parameters of Asynchronous Electric Machines with Asymmetrical Windings of Electric Locomotives. Communications - Scientific Letters of the University of Zilina, 21 (2), 24–31. doi: https://doi.org/10.26552/com.c.2019.2.24-31
  3. Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriiev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.127936
  4. Basov, H. H., Yatsko, S. I. (2005). Rozvytok elektrychnoho motorvahonnoho rukhomoho skladu. Ch. 2. Kharkiv: «Apeks+», 248.
  5. Bezruchenko, V. M., Varchenko, V. K., Chumak, V. V. (2003). Tiahovi elektrychni mashyny elektrorukhomoho skladu. Dnipropetrovsk: DNUZT, 252.
  6. Liubarskyi, B., Riabov, I., Iakunin, D., Dubinina, O., Nikonov, O., Domansky, V. (2021). Determining the effect of stator groove geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment level. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), 68–74. doi: https://doi.org/10.15587/1729-4061.2021.233270
  7. Liubarskyi, B. G., Overianova, L. V., Riabov, I. S., Iakunin, D. I., Ostroverkh, O. O., Voronin, Y. V. (2021). Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics, 2, 3–8. doi: https://doi.org/10.20998/2074-272x.2021.2.01
  8. Stipetic, S., Zarko, D., Kovacic, M. (2016). Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, 10 (5), 330–338. doi: https://doi.org/10.1049/iet-epa.2015.0245
  9. Viego-Felipe, P. R., Gómez-Sarduy, J. R., Sousa-Santos, V., Quispe-Oqueña, E. C. (2018). Motores sincrónicos de reluctancia asistidos por iman permanente: Un nuevo avance en el desarrollo de los motores eléctricos. Ingeniería, Investigación y Tecnología, 19 (3), 269–279. doi: https://doi.org/10.22201/fi.25940732e.2018.19n3.023
  10. Moghaddam, R.-R. (2011). Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications. Theoretical and Experimental Reevaluation. Stockholm, 260. Available at: http://www.diva-portal.org/smash/get/diva2:417890/FULLTEXT01.pdf
  11. Liubarskyi, B., Iakunin, D., Nikonov, O., Liubarskyi, D., Vasenko, V., Gasanov, M. (2021). Procedure for selecting optimal geometric parameters of the rotor for a traction non-partitioned permanent magnet-assisted synchronous reluctance motor. Eastern-European Journal of Enterprise Technologies, 6 (8 (114)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.247208
  12. Wu, W., Zhu, X., Quan, L., Du, Y., Xiang, Z., Zhu, X. (2018). Design and Analysis of a Hybrid Permanent Magnet Assisted Synchronous Reluctance Motor Considering Magnetic Saliency and PM Usage. IEEE Transactions on Applied Superconductivity, 28 (3), 1–6. doi: https://doi.org/10.1109/tasc.2017.2775584
  13. Development of Main Circuit System using Direct Drive Motor (DDM). Available at: https://www.jreast.co.jp/e/development/tech/pdf_1/46_52tecrev.pdf
  14. Vaskovskyi, Yu. M., Haidenko, Yu. A., Rusiatynskyi, A. E. (2013). Mathematical modeling and selecting of construction parameters for traction synchronous motors with permanent magnets. Tekhnichna elektrodynamika, 6, 40–45. Available at: https://docplayer.com/38603915-Udk-matematicheskoe-modelirovanie-i-vybor-konstruktivnyh-parametrov-tyagovogo-sinhronnogo-elektrodvigatelya-s-postoyannymi-magnitami.html
  15. Dehghani Ashkezari, J., Khajeroshanaee, H., Niasati, M., Jafar Mojibian, M. (2017). Optimum design and operation analysis of permanent magnet-assisted synchronous reluctance motor. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 1894–1907. doi: https://doi.org/10.3906/elk-1603-170
  16. Mohd Jamil, M. L., Zolkapli, Z. Z., Jidin, A., Raja Othman, R. N. F., Sutikno, T. (2015). Electromagnetic Performance due to Tooth-tip Design in Fractional-slot PM Brushless Machines. International Journal of Power Electronics and Drive Systems (IJPEDS), 6 (4), 860. doi: https://doi.org/10.11591/ijpeds.v6.i4.pp860-868
  17. Severin, V. P. (2005). Vector optimization of the integral quadratic estimates for automatic control systems. Journal of Computer and Systems Sciences International, 44 (2), 207–216.
  18. Nikulina, E. N., Severyn, V. P., Kotsiuba, N. V. (2018). Optimization of direct quality indexes of automatic control systems of steam generator productivity. Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies, 21, 8–13. doi: https://doi.org/10.20998/2079-0023.2018.21.02
  19. Kononenko, K. E., Kononenko, A. V., Krutskikh, S. V. (2015). Parametricheskaya optimizatsiya geometrii pazov rotora kak sposob povysheniya KPD asinkhronnogo dvigatelya s korotkozamknutym rotorom. Elektrotekhnicheskie kompleksy i sistemy upravleniya, 2 (38), 45–49.
  20. Uspensky, B., Avramov, K., Liubarskyi, B., Andrieiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877
  21. Meeker, D. (2015). Finite Element Method Magnetics. Version 4.2. User’s Manual. Available at: http://www.femm.info/Archives/doc/manual42.pdf
  22. Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Yatsko, S., Vashchenko, Y. (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304

Downloads

Published

2022-04-30

How to Cite

Liubarskyi, B., Iakunin, D., Nikonov, O., Liubarskyi, D., & Yeritsyan, B. (2022). Optimizing geometric parameters for the rotor of a traction synchronous reluctance motor assisted by partitioned permanent magnets . Eastern-European Journal of Enterprise Technologies, 2(8 (116), 38–44. https://doi.org/10.15587/1729-4061.2022.254373

Issue

Section

Energy-saving technologies and equipment