Devising a methodology for X-ray image contrast enhancement by combining CLAHE and gamma correction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.258092

Keywords:

digital X-ray image, image quality evaluation, image enhancement, contrast enhancement

Abstract

Increasing image contrast is very important for the visual analysis of X-ray images. To improve the contrast of medical images, various contrast enhancement methods are used, such as histogram equalization and histogram modifications, gamma correction, etc. The paper explores adaptive methods for enhancing the contrast of digital X-ray images. Research was carried out on 1000 images from the open Kaggle database. Combinations of sequential application of several methods for enhancing image contrast were evaluated. Experiments using gamma image correction allowed us to select ranges of input and output parameters of the brightness conversion function. To obtain a better result, before performing gamma correction, it is proposed to use the method of equalizing the histogram of an X-ray image. Possibilities of adaptive image histogram equalization are explored. The performed experiments allow us to propose an improved version of increasing the contrast of X-ray images. Combining the adaptive histogram equalization algorithm with contrast clipping has a visually noticeable effect of improving the contrast of X-ray images. Contrast improvement is supported by objective NIQE and BRISQUE quantifications that do not require reference images. A feature of this work is the use of objective non-reference assessments to determine the quality of images. The performed experiments indicate that the NIQE score correlates better with the visual assessment of image contrast changes. As a result of the experiments, recommendations were proposed for choosing the parameters of the gamma correction and adaptive histogram equalization methods, which make it possible to enhance the contrast without the intensification of noise in the image

Author Biographies

Gulmira Omarova, L. N. Gumilyov Eurasian National University

Master of Technical Sciences, Senior Teacher

Department of Information Systems

Zhangeldi Aitkozha, L. N. Gumilyov Eurasian National University

Candidate of Physical and Mathematical Sciences

Department of Information Systems

Zhanna Sadirmekova, M. Kh. Dulaty Taraz Regional University

Doctor of Philosophy PhD

Department of Information Systems

Gulkiz Zhidekulova, M. Kh. Dulaty Taraz Regional University

Candidate of Technical Sciences

Department of Information Systems

Dinara Kazimova, Karaganda Buketov University

Candidate of Pedagogical Sciences, Associate Professor, Dean

Faculty of Mathematics and Information Technologies

Raikhan Muratkhan, Karaganda Buketov University

PhD

Department of Applied Mathematics and Computer Science

Aliya Takuadina, Karaganda Medical University

PhD, Associate Professor

Department of Informatics and Biostatistics

Damesh Abdykeshova, Karaganda Medical University

Master of Science

Department of Informatics and Biostatistics

References

  1. Gonsales, R., Vuds, R. (2012). Tsifrovaya obrabotka izobrazheniy. Moscow: Tekhnosfera, 1104. Available at: https://en.sng1lib.org/book/2912190/7268af
  2. Yue, H., Yang, J., Sun, X., Wu, F., Hou, C. (2017). Contrast Enhancement Based on Intrinsic Image Decomposition. IEEE Transactions on Image Processing, 26 (8), 3981–3994. doi: https://doi.org/10.1109/tip.2017.2703078
  3. Jung, C., Sun, T. (2017). Optimized Perceptual Tone Mapping for Contrast Enhancement of Images. IEEE Transactions on Circuits and Systems for Video Technology, 27 (6), 1161–1170. doi: https://doi.org/10.1109/tcsvt.2016.2527339
  4. Huang, S.-C., Cheng, F.-C., Chiu, Y.-S. (2013). Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution. IEEE Transactions on Image Processing, 22 (3), 1032–1041. doi: https://doi.org/10.1109/tip.2012.2226047
  5. Shakeri, M., Dezfoulian, M. H., Khotanlou, H., Barati, A. H., Masoumi, Y. (2017). Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digital Signal Processing, 62, 224–237. doi: https://doi.org/10.1016/j.dsp.2016.10.013
  6. Liu, L., Jia, Z., Yang, J., Kasabov, N. (2015). A medical image enhancement method using adaptive thresholding in NSCT domain combined unsharp masking. International Journal of Imaging Systems and Technology, 25 (3), 199–205. doi: https://doi.org/10.1002/ima.22137
  7. Maurya, L., Mahapatra, P. K., Kumar, A. (2019). A social spider optimized image fusion approach for contrast enhancement and brightness preservation. Applied Soft Computing, 52, 575–592. doi: https://doi.org/10.1016/j.asoc.2016.10.012
  8. Kim, S. E., Jeon, J. J., Eom, I. K. (2016). Image contrast enhancement using entropy scaling in wavelet domain. Signal Processing, 127, 1–11. doi: https://doi.org/10.1016/j.sigpro.2016.02.016
  9. Lidong, H., Wei, Z., Jun, W., Zebin, S. (2015). Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Processing, 9 (10), 908–915. doi: https://doi.org/10.1049/iet-ipr.2015.0150
  10. Tiwari, M., Gupta, B., Shrivastava, M. (2015). High‐speed quantile‐based histogram equalisation for brightness preservation and contrast enhancement. IET Image Processing, 9 (1), 80–89. doi: https://doi.org/10.1049/iet-ipr.2013.0778
  11. Wei, Z., Lidong, H., Jun, W., Zebin, S. (2015). Entropy maximisation histogram modification scheme for image enhancement. IET Image Processing, 9 (3), 226–235. doi: https://doi.org/10.1049/iet-ipr.2014.0347
  12. Chest X-Ray Images (Pneumonia). Available at: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
  13. Gonsales, R., Vuds, R., Eddins, S. (2006). Tsifrovaya obrabotka izobrazheniy v srede Matlab. Moscow: Tekhnosfera, 616. Available at: https://en.sng1lib.org/book/2075428/0968c1
  14. Starovoitov, F. V., Starovoitov, V. V. (2018). Parameters of the curve of local estimate distribution as image quality measures. Sistemniy analiz i prikladnaya informatika, 3, 26–41. Available at: https://cyberleninka.ru/article/n/parametry-krivoy-raspredeleniya-lokalnyh-otsenok-kak-mery-kachestva-izobrazheniy
  15. Ma, J., Fan, X., Yang, S. X., Zhang, X., Zhu, X. (2017). Contrast Limited Adaptive Histogram Equalization Based Fusion for Underwater Image Enhancement. Preprints doi: https://doi.org/10.20944/preprints201703.0086.v1
  16. Omarova, G., Starovoitov, V. (2022). X-ray images contrast enhancement based on gamma correction. BULLETIN Series of Physics & Mathematical Sciences, 77 (1), 132–138. doi: https://doi.org/10.51889/2022-1.1728-7901.18
  17. Mittal, A., Soundararajan, R., Bovik, A. C. (2013). Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Processing Letters, 20 (3), 209–212. doi: https://doi.org/10.1109/lsp.2012.2227726
  18. Mittal, A., Moorthy, A. K., Bovik, A. C. (2012). No-Reference Image Quality Assessment in the Spatial Domain. IEEE Transactions on Image Processing, 21 (12), 4695–4708. doi: https://doi.org/10.1109/tip.2012.2214050

Downloads

Published

2022-06-30

How to Cite

Omarova, G., Aitkozha, Z., Sadirmekova, Z., Zhidekulova, G., Kazimova, D., Muratkhan, R., Takuadina, A., & Abdykeshova, D. (2022). Devising a methodology for X-ray image contrast enhancement by combining CLAHE and gamma correction . Eastern-European Journal of Enterprise Technologies, 3(2 (117), 18–29. https://doi.org/10.15587/1729-4061.2022.258092