Revealing the influence of technological parameters on the process of extraction from walnut shell

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.261473

Keywords:

antioxidants walnut, biological activity, lignin, catechins, quercetin, optimization of extraction

Abstract

The object of this study is the influence of technological parameters on the extraction process from walnut shells.

The main practical application of walnut is associated with the use of a kernel placed inside the shell. The kernel isolated after processing is used in confectionery, fat-and-oil, flour milling, pharmaceutical, and other industries. The walnut shell that remains after cleaning is waste and is usually disposed of. Analysis of studies reveals that walnut shells are rich in phenolic acids and related polyphenols, which are essentially a natural antibiotic with numerous healing effects. Along with this, crushed walnut shell is a universal organic, biodegradable, environmentally friendly, and valuable raw material with unique physical characteristics and chemical properties used in various sectors of the economy. Walnut shell is 52.3 % lignin, for comparison ‒ almond shell contains 28.9 %, pine nut – 40 % lignin. Studies show that lignin characterizes the level of strength of the shell, and in its chemical composition is a source of antioxidants. Various methods of extraction of biologically active substances from walnut shells are used. However, the results obtained by different methods have a wide range of data. Optimization of extraction processes has been carried out and its regularity was established. By the method of mathematical modeling, optimal extraction modes were revealed under which the most complete extraction of biologically active substances is observed. Optimal extraction modes have been developed.

Author Biographies

Madina Sultanova, AF LLP "Kazakh Research Institute of Processing and Food Industry"

PhD Student

Laboratory Manager Primary Processing of Vegetable Raw Materials

Khamza Abdrakhmanov, AF LLP "Kazakh Research Institute of Processing and Food Industry"

Senior Researcher

Laboratory Manager Primary Processing of Vegetable Raw Materials

Aida Nurysh, AF LLP "Kazakh Research Institute of Processing and Food Industry"

Junior Researcher

Aygerim Saduakas, AF LLP "Kazakh Research Institute of Processing and Food Industry"

Researcher

Nurtore Akzhanov, AF LLP "Kazakh Research Institute of Processing and Food Industry"

Junior Researcher

References

  1. Queirós, C. S. G. P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M. J. V., Pereira, H. (2019). Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 10 (1), 175–188. doi: https://doi.org/10.1007/s13399-019-00424-2
  2. Soto-Maldonado, C., Caballero-Valdés, E., Santis-Bernal, J., Jara-Quezada, J., Fuentes-Viveros, L., Zúñiga-Hansen, M. E. (2022). Potential of solid wastes from the walnut industry: Extraction conditions to evaluate the antioxidant and bioherbicidal activities. Electronic Journal of Biotechnology, 58, 25–36. doi: https://doi.org/10.1016/j.ejbt.2022.04.005
  3. Andrade, T. de J. A. dos S., Araújo, B. Q., Citó, A. M. das G. L., da Silva, J., Saffi, J., Richter, M. F., Ferraz, A. de B. F. (2011). Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL). Food Chemistry, 126 (3), 1044–1048. doi: https://doi.org/10.1016/j.foodchem.2010.11.122
  4. Wang, S., Fu, W., Han, H., Rakita, M., Han, Q., Xu, Q. (2020). Optimization of ultrasound-assisted extraction of phenolic compounds from walnut shells and characterization of their antioxidant activities. Journal of Food and Nutrition Research, 8 (1), 50–57.
  5. Tultabayev, M., Zhumanova, U., Borovski, A., Kizatova, M. (2021). Simulation of the Extrusion Process Oil Crops Waste, on the Example of Flax. Chemistry and Chemical Engineering, 2021 (1). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4112988
  6. Mourtzinos, I., Goula, A. (2019). Polyphenols in Agricultural Byproducts and Food Waste. Polyphenols in Plants, 23–44. doi: https://doi.org/10.1016/b978-0-12-813768-0.00002-5
  7. Pereira, J. A., Oliveira, I., Sousa, A., Ferreira, I. C. F. R., Bento, A., Estevinho, L. (2008). Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food and Chemical Toxicology, 46 (6), 2103–2111. doi: https://doi.org/10.1016/j.fct.2008.02.002
  8. Zhang, Z., Liao, L., Moore, J., Wu, T., Wang, Z. (2009). Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113 (1), 160–165. doi: https://doi.org/10.1016/j.foodchem.2008.07.061
  9. Zhumaliyeva, G., Chomanov, U., Tultabaeva, T., Tultabayev, M., Kasymbek, R. (2020). Formation of Processes of Intensification of Crop Growth For The Formation of Business Structures. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.4128701
  10. Balasundram, N., Sundram, K., Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99 (1), 191–203. doi: https://doi.org/10.1016/j.foodchem.2005.07.042
  11. Tultabayev, M., Chomanov, U., Tultabayeva, T., Shoman, A., Dodaev, K., Azimov, U., Zhumanova, U. (2022). Identifying patterns in the fatty-acid composition of safflower depending on agroclimatic conditions. Eastern-European Journal of Enterprise Technologies, 2 (11 (116)), 23–28. doi: https://doi.org/10.15587/1729-4061.2022.255336
  12. Contini, M., Baccelloni, S., Massantini, R., Anelli, G. (2008). Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chemistry, 110 (3), 659–669. doi: https://doi.org/10.1016/j.foodchem.2008.02.060
  13. Fernández-Agulló, A., Pereira, E., Freire, M. S., Valentão, P., Andrade, P. B., González-Álvarez, J., Pereira, J. A. (2013). Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 42, 126–132. doi: https://doi.org/10.1016/j.indcrop.2012.05.021
  14. Sultana, B., Anwar, F., Ashraf, M. (2009). Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules, 14 (6), 2167–2180. doi: https://doi.org/10.3390/molecules14062167
  15. Yang, J., Chen, C., Zhao, S., Ge, F., Liu, D. (2014). Effect of Solvents on the Antioxidant Activity of Walnut (Juglans regia L.) Shell Extracts. Journal of Food and Nutrition Research, 2 (9), 621–626. doi: https://doi.org/10.12691/jfnr-2-9-15
  16. Akkol, E. K., Orhan, I. E., Yeşilada, E. (2012). Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus laurifolius L. leaves. Food Chemistry, 131 (2), 626–631. doi: https://doi.org/10.1016/j.foodchem.2011.09.041
  17. Zakaria, Z. A., Mohamed, A. M., Jamil, N. M., Rofiee, M. S., Somchit, M. N., Zuraini, A. et. al. (2011). In vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. African journal of Biotechnology, 10 (2), 273–282. Available at: https://www.researchgate.net/publication/266884212_In_vitro_cytotoxic_and_antioxidant_properties_of_the_aqueous_chloroform_and_methanol_extracts_of_Dicranopteris_linearis_leaves
  18. Perveen, S., El-Shafae, A. M., Al-Taweel, A., Fawzy, G. A., Malik, A., Afza, N. et. al. (2011). Antioxidant and urease inhibitory C-glycosylflavonoids from Celtis africana. Journal of Asian Natural Products Research, 13 (9), 799–804. doi: https://doi.org/10.1080/10286020.2011.593171
  19. Kurian, G. A., Suryanarayanan, S., Raman, A., Padikkala, J. (2010). Antioxidant effects of ethyl acetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rat hearts. Chinese Medicine, 5 (1), 3. doi: https://doi.org/10.1186/1749-8546-5-3
  20. Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H. et. al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72 (2), 145–171. doi: https://doi.org/10.1016/s0308-8146(00)00223-5
  21. Al-Farsi, M. A., Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108 (3), 977–985. doi: https://doi.org/10.1016/j.foodchem.2007.12.009
  22. Jahanban-Esfahlan, A., Jahanban-Esfahlan, R., Tabibiazar, M., Roufegarinejad, L., Amarowicz, R. (2020). Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. RSC Advances, 10 (12), 7026–7047. doi: https://doi.org/10.1039/c9ra10084a
  23. Sheng, F., Hu, B., Jin, Q., Wang, J., Wu, C., Luo, Z. (2021). The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules, 26 (10), 3013. doi: https://doi.org/10.3390/molecules26103013
  24. Ostrikov, A. N., Gorbatova, A. V., Filiptsov, P. V. (2016). Analysis of fatty acid composition of peanut and walnut oil. Tekhnologii pischevoy i pererabatyvayuschey promyshlennosti APK - produkty zdorovogo pitaniya, 4 (12), 37–42. Available at: https://cyberleninka.ru/article/n/analiz-zhirnokislotnogo-sostava-masel-arahisa-i-gretskogo-oreha
  25. Medic, A., Jakopic, J., Solar, A., Hudina, M., Veberic, R. (2021). Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds. Biology, 10 (6), 535. doi: https://doi.org/10.3390/biology10060535
  26. Gutiérrez Ortiz, A. L., Berti, F., Navarini, L., Crisafulli, P., Colomban, S., Forzato, C. (2018). Aqueous extracts of walnut (Juglans regia L.) leaves: quantitative analyses of hydroxycinnamic and chlorogenic acids. Journal of Chromatographic Science, 56 (8), 753–760. doi: https://doi.org/10.1093/chromsci/bmy041
  27. Pang, X., Zhong, Z., Jiang, F., Yang, J., Nie, H. (2022). Juglans regia L. extract promotes osteogenesis of human bone marrow mesenchymal stem cells through BMP2/Smad/Runx2 and Wnt/β-catenin pathways. Journal of Orthopaedic Surgery and Research, 17 (1). doi: https://doi.org/10.1186/s13018-022-02949-1
  28. Jahanban-Esfahlan, A., Ostadrahimi, A., Tabibiazar, M., Amarowicz, R. (2019). A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules, 24 (11), 2133. doi: https://doi.org/10.3390/molecules24112133
  29. Schwindl, S., Kraus, B., Heilmann, J. (2017). Phytochemical study of Juglans regia L. leaves. Phytochemistry, 144, 58–70. doi: https://doi.org/10.1016/j.phytochem.2017.08.012
  30. Soto-Maldonado, C., Vergara-Castro, M., Jara-Quezada, J., Caballero-Valdés, E., Müller-Pavez, A., Zúñiga-Hansen, M. E., Altamirano, C. (2019). Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electronic Journal of Biotechnology, 39, 1–7. doi: https://doi.org/10.1016/j.ejbt.2019.02.001
  31. Vieira, V., Pereira, C., Abreu, R. M. V., Calhelha, R. C., Alves, M. J., Coutinho, J. A. P. et. al. (2020). Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food and Chemical Toxicology, 137, 111189. doi: https://doi.org/10.1016/j.fct.2020.111189
  32. Jakopič, J., Veberič, R., štampar, F. (2009). Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agriculturae Slovenica, 93 (1). doi: https://doi.org/10.2478/v10014-009-0002-4
  33. Bamberger, C., Rossmeier, A., Lechner, K., Wu, L., Waldmann, E., Fischer, S. et. al. (2018). A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randomized, Controlled Trial. Nutrients, 10 (2), 244. doi: https://doi.org/10.3390/nu10020244
  34. Rock, C. L., Flatt, S. W., Barkai, H.-S., Pakiz, B., Heath, D. D. (2017). Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety. Nutrition Journal, 16 (1). doi: https://doi.org/10.1186/s12937-017-0304-z
  35. Bamberger, C., Rossmeier, A., Lechner, K., Wu, L., Waldmann, E., Stark, R. et. al. (2017). A Walnut-Enriched Diet Reduces Lipids in Healthy Caucasian Subjects, Independent of Recommended Macronutrient Replacement and Time Point of Consumption: a Prospective, Randomized, Controlled Trial. Nutrients, 9 (10), 1097. doi: https://doi.org/10.3390/nu9101097
  36. Bhardwaj, R., Dod, H., Sandhu, M. S., Bedi, R., Dod, S., Konat, G. et. al. (2018). Acute effects of diets rich in almonds and walnuts on endothelial function. Indian Heart Journal, 70 (4), 497–501. doi: https://doi.org/10.1016/j.ihj.2018.01.030
  37. Mohammadi, J., Delaviz, H., Ghalamfarsa, G., Mohammadi, B., Farhadi, N. (2017). A review study on phytochemistry and pharmacology applications of Juglans Regia plant. Pharmacognosy Reviews, 11 (22), 145. doi: https://doi.org/10.4103/phrev.phrev_10_17
  38. Farr, O. M., Tuccinardi, D., Upadhyay, J., Oussaada, S. M., Mantzoros, C. S. (2017). Walnut consumption increases activation of the insula to highly desirable food cues: A randomized, double‐blind, placebo‐controlled, cross‐over fMRI study. Diabetes, Obesity and Metabolism, 20 (1), 173–177. doi: https://doi.org/10.1111/dom.13060
  39. Scott, N., Ellmers, L., Pilbrow, A., Thomsen, L., Richards, A., Frampton, C., Cameron, V. (2017). Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome. Nutrients, 9 (7), 722. doi: https://doi.org/10.3390/nu9070722
  40. Wang, D., Mu, Y., Dong, H., Yan, H., Hao, C., Wang, X., Zhang, L. (2017). Chemical Constituents of the Ethyl Acetate Extract from Diaphragma juglandis Fructus and Their Inhibitory Activity on Nitric Oxide Production In Vitro. Molecules, 23 (1), 72. doi: https://doi.org/10.3390/molecules23010072
  41. Zibaeenezhad, M. J., Farhadi, P., Attar, A., Mosleh, A., Amirmoezi, F., Azimi, A. (2017). Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Nutrition & Diabetes, 7 (4), e259–e259. doi: https://doi.org/10.1038/nutd.2017.8

Downloads

Published

2022-08-30

How to Cite

Sultanova, M., Abdrakhmanov, K., Nurysh, A., Saduakas, A., & Akzhanov, N. (2022). Revealing the influence of technological parameters on the process of extraction from walnut shell . Eastern-European Journal of Enterprise Technologies, 4(11 (118), 35–42. https://doi.org/10.15587/1729-4061.2022.261473

Issue

Section

Technology and Equipment of Food Production