Unraveling the study of liquid smoke from rice husks as a green corrosion inhibitor in mild steel under 1 M HCl

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265086

Keywords:

liquid smoke, green corrosion inhibitor, rice husks ash, chemisorptions

Abstract

The work provides the more comprehensive development of Liquid Smoke from Rice Husks Ash (RHA). Notably, the study focuses on the interaction between the primary molecules of inhibitor and mild steel, including thermodynamic calculation and surface treatment upon addition of inhibitor. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) characterization were utilized to evaluate the anticorrosion of RHA. The Raman Spectroscopy pre and post-addition of RHA’s inhibitor were used to compare the adsorbed functional group of inhibitors. Moreover, the thermodynamic calculation of the inhibitor’s adsorption determines the types of adsorption of the inhibitor. As a result of the adsorption process, the Scanning Electronic Microscope-Energy Dispersive X-Ray (SEM-EDX) aided by The Atomic Force Microscopy (AFM) and Contact Angle Test was implemented to unveil the surface treatment and the change of elemental composition after the addition of an 80 ppm inhibitor. The PP and EIS results show a significant depression of the current density at ‒2.75 μA·cm2 in 80 ppm solution with the highest inhibition efficiency of 99.82 %. The superior inhibition correlates to the adsorption of Si–OH, C–C, C–O–C, >C=O, complex structure, and –OH at wavenumber 458, 662, 1095, 1780, and 3530 cm-1. The LS shows a significant surface area of protection of 0.9982 and high adsorption constant (Kads) at 11.648. The calculated ΔGads of ‒6.59 kJ/mol unveils the chemisorption in nature. At the same time, a combination of 20 and 80 ppm solution is predicted adsorbed horizontally to reduce the contact between the solution and substrate, as shown in SEM and AFM results. It also increases the contact angle and their corresponding hydrophobicity

Supporting Agency

  • The author gratefully thanks the Ministry of Research and Technology/National Research and Innovation Agency for the financial support of contract number NKB-1008/UN2.RST/HKP.05.00/2022.

Author Biographies

Agus Kaban, Universitas Indonesia

Master of Engineering, Graduate Student

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Wahyu Mayangsari, Research Center for Metallurgy-National Research and Innovation Agency

Master of Engineering, Researcher

Mochammad Anwar, Research Center for Metallurgy-National Research and Innovation Agency

Master of Science, Senior Researcher

Ahmad Maksum, Politeknik Negeri Jakarta

Doctor of Engineering, Lecturer

Research Center for Eco-Friendly Technology

Department of Mechanical Engineering

Taufik Aditiyawarman, Universitas Indonesia

Master of Science, Graduate Student

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Johny Soedarsono, Universitas Indonesia

Doctor of Engineering, Professor

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Aga Ridhova, Research Center for Metallurgy-National Research and Innovation Agency

Master of Engineering, Researcher

Rini Riastuti, Universitas Indonesia

Doctor of Engineering, Senior Lecturer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

References

  1. Guillal, A., Ben Seghier, M. E. A., Nourddine, A., Correia, J. A. F. O., Bt Mustaffa, Z., Trung, N.-T. (2020). Probabilistic investigation on the reliability assessment of mid- and high-strength pipelines under corrosion and fracture conditions. Engineering Failure Analysis, 118, 104891. doi: https://doi.org/10.1016/j.engfailanal.2020.104891
  2. Simmons, M. R. (2008). Report of offshore technology conference (OTC) presentation. Houston, TX: NACE International Oil and Gas Production.
  3. Gupta, N. K., Verma, C., Salghi, R., Lgaz, H., Mukherjee, A. K., Quraishi, M. A. (2017). New phosphonate based corrosion inhibitors for mild steel in hydrochloric acid useful for industrial pickling processes: experimental and theoretical approach. New Journal of Chemistry, 41 (21), 13114–13129. doi: https://doi.org/10.1039/c7nj01431g
  4. Aditiyawarman, T., Kaban, A. P. S., Soedarsono, J. W. (2022). A Recent Review of Risk-Based Inspection Development to Support Service Excellence in the Oil and Gas Industry: An Artificial Intelligence Perspective. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 9 (1). doi: https://doi.org/10.1115/1.4054558
  5. Aditiyawarman, T., Soedarsono, J. W., Kaban, A. P. S., Riastuti, R., Rahmadani, H. (2022). The Study of Artificial Intelligent in Risk-Based Inspection Assessment and Screening: A Study Case of Inline Inspection. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 9 (1). doi: https://doi.org/10.1115/1.4054969
  6. Pumps, S. (2010). Materials and Corrosion. Centrifugal Pump Handbook, 227–250. doi: https://doi.org/10.1016/b978-0-7506-8612-9.00008-5
  7. Wasim, M., Djukic, M. B. (2021). Corrosion induced failure of the ductile iron pipes at micro- and nano-levels. Engineering Failure Analysis, 121, 105169. doi: https://doi.org/10.1016/j.engfailanal.2020.105169
  8. Jawad, M. N., Amouzad Mahdiraji, G., Hajibeigy, M. T. (2020). Performance improvement of sacrificial anode cathodic protection system for above ground storage tank. SN Applied Sciences, 2 (12). doi: https://doi.org/10.1007/s42452-020-03823-7
  9. Baloyi, T., Maledi, N., Andrews, A. (2022). Corrosion performance of zinc phosphate coatings deposited on AA6061-HDG steel. Materials Chemistry and Physics, 283, 126009. doi: https://doi.org/10.1016/j.matchemphys.2022.126009
  10. Flø, N. E., Faramarzi, L., Iversen, F., Kleppe, E. R., Graver, B., Bryntesen, H. N., Johnsen, K. (2019). Assessment of material selection for the CO2 absorption process with aqueous MEA solution based on results from corrosion monitoring at Technology Centre Mongstad. International Journal of Greenhouse Gas Control, 84, 91–110. doi: https://doi.org/10.1016/j.ijggc.2019.02.004
  11. Kaban, A. P. S., Ridhova, A., Priyotomo, G., Elya, B., Maksum, A., Sadeli, Y. et. al. (2021). Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution. Eastern-European Journal of Enterprise Technologies, 2 (6 (110)), 6–20. doi: https://doi.org/10.15587/1729-4061.2021.224435
  12. Arlan, A. S., Subekti, N., Soedarsono, J. W., Rustandi, A. (2018). Corrosion Inhibition by a Caesalpinia Sappan L Modified Imidazoline for Carbon Steel API 5L Grade X60 in HCl 1M Environment. Materials Science Forum, 929, 158–170. doi: https://doi.org/10.4028/www.scientific.net/msf.929.158
  13. Soedarsono, J. W., Shihab, M. N., Azmi, M. F., Maksum, A. (2018). Study of curcuma xanthorrhiza extract as green inhibitor for API 5L X42 steel in 1M HCl solution. IOP Conference Series: Earth and Environmental Science, 105, 012060. doi: https://doi.org/10.1088/1755-1315/105/1/012060
  14. Kadhim, A., Al-Amiery, A. A., Alazawi, R., Al-Ghezi, M. K. S., Abass, R. H. (2021). Corrosion inhibitors. A review. International Journal of Corrosion and Scale Inhibition, 10 (1). doi: https://doi.org/10.17675/2305-6894-2021-10-1-3
  15. Lin, B., Shao, J., Xu, Y., Lai, Y., Zhao, Z. (2021). Adsorption and corrosion of renewable inhibitor of Pomelo peel extract for mild steel in phosphoric acid solution. Arabian Journal of Chemistry, 14 (5), 103114. doi: https://doi.org/10.1016/j.arabjc.2021.103114
  16. Verma, C., Quraishi, M. A., Rhee, K. Y. (2021). Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors. Journal of Molecular Liquids, 328, 115395. doi: https://doi.org/10.1016/j.molliq.2021.115395
  17. Rustandi, A., Soedarsono, J. W., Suharno, B. (2011). The Use of Mixture of Piper Betle and Green Tea as a Green Corrosion Inhibitor for API X-52 Steel in Aerated 3.5 % NaCl Solution at Various Rotation Rates. Advanced Materials Research, 383-390, 5418–5425. doi: https://doi.org/10.4028/www.scientific.net/amr.383-390.5418
  18. Azmi, M. F., Soedarsono, J. W. (2018). Study of corrosion resistrance of pipeline API 5L X42 using green inhibitor bawang dayak (Eleutherine americanna Merr.) in 1M HCl. IOP Conference Series: Earth and Environmental Science, 105, 012061. doi: https://doi.org/10.1088/1755-1315/105/1/012061
  19. Kaban, E. E., Maksum, A., Permana, S., Soedarsono, J. W. (2018). Utilization of secang heartwood (caesalpinia sappan l) as a green corrosion inhibitor on carbon steel (API 5L Gr. B) in 3.5% NaCl environment. IOP Conference Series: Earth and Environmental Science, 105, 012062. doi: https://doi.org/10.1088/1755-1315/105/1/012062
  20. Kusumastuti, R., Pramana, R. I., Soedarsono, J. W. (2017). The use of morinda citrifolia as a green corrosion inhibitor for low carbon steel in 3.5% NaCl solution. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4978085
  21. Soltani, N., Bahrami, A., Pech-Canul, M. I., González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. doi: https://doi.org/10.1016/j.cej.2014.11.056
  22. Daniel-Mkpume, C. C., Aigbodion, V. S., Obikwelu, D. O. N. (2021). Electrochemical analysis and microstructure of value-added functional Zn-ZnO-rice husk ash composite coating of mild steel. Chemical Data Collections, 35, 100767. doi: https://doi.org/10.1016/j.cdc.2021.100767
  23. Nisar, N., Bhat, J. A. (2020). Experimental investigation of Rice Husk Ash on compressive strength, carbonation and corrosion resistance of reinforced concrete. Australian Journal of Civil Engineering, 19 (2), 155–163. doi: https://doi.org/10.1080/14488353.2020.1838419
  24. Awizar, D. A., Othman, N. K., Jalar, A., Daud, A. R., Rahman, I. A., Al-Hardan, N. H. (2013). Nanosilicate extraction from rice husk ash as green corrosion inhibitor. International Journal of Electrochemical Science, 8, 1759–1769. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.654.1036&rep=rep1&type=pdf
  25. Paul Setiawan Kaban, A., Mayangsari, W., Syaiful Anwar, M., Maksum, A., Riastuti, R., Aditiyawarman, T., Wahyuadi Soedarsono, J. (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62, 4225–4234. doi: https://doi.org/10.1016/j.matpr.2022.04.738
  26. King, A. D., Birbilis, N., Scully, J. R. (2014). Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 121, 394–406. doi: https://doi.org/10.1016/j.electacta.2013.12.124
  27. Zhao, Q., Guo, J., Cui, G., Han, T., Wu, Y. (2020). Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids and Surfaces B: Biointerfaces, 194, 111150. doi: https://doi.org/10.1016/j.colsurfb.2020.111150
  28. Ansari, K. R., Quraishi, M. A., Singh, A. (2015). Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corrosion Science, 95, 62–70. doi: https://doi.org/10.1016/j.corsci.2015.02.010
  29. Khadraoui, A., Khelifa, A., Hadjmeliani, M., Mehdaoui, R., Hachama, K., Tidu, A. et. al. (2016). Extraction, characterization and anti-corrosion activity of Mentha pulegium oil: Weight loss, electrochemical, thermodynamic and surface studies. Journal of Molecular Liquids, 216, 724–731. doi: https://doi.org/10.1016/j.molliq.2016.02.005
  30. Yilmaz, N., Fitoz, A., Ergun, U., Emregül, K. C. (2016). A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corrosion Science, 111, 110–120. doi: https://doi.org/10.1016/j.corsci.2016.05.002
  31. Pereira, M. A., Oliveira, J. E. de, Fonseca, C. S. (2021). Influence of the use of rice husk as source of silica on the sol-gel synthesis of bioglass. Cerâmica, 67 (383), 333–337. doi: https://doi.org/10.1590/0366-69132021673833134
  32. Bergmann CP, P. P. (2015). Raman Spectroscopy of Iron Oxide of Nanoparticles (Fe3O4). Journal of Material Science & Engineering, 05 (01). doi: https://doi.org/10.4172/2169-0022.1000217
  33. Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177 (3), 941–948. doi: https://doi.org/10.1111/j.1365-246x.2009.04122.x
  34. Yu, Y., Ramachandran, P. V., Wang, M. C. (2014). Shedding new light on lipid functions with CARS and SRS microscopy. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1841 (8), 1120–1129. doi: https://doi.org/10.1016/j.bbalip.2014.02.003
  35. Gupta, A., Kumar, M., Ghosh, P., Swati, Thakur, I. S. (2022). Risk assessment of a municipal extended aeration activated sludge treatment plant using physico-chemical and in vitro bioassay analyses. Environmental Technology & Innovation, 26, 102254. doi: https://doi.org/10.1016/j.eti.2021.102254
  36. Akalezi, C. O., Maduabuchi, A. C., Enenebeaku, C. K., Oguzie, E. E. (2020). Experimental and DFT evaluation of adsorption and inhibitive properties of Moringa oliefera extract on mild steel corrosion in acidic media. Arabian Journal of Chemistry, 13 (12), 9270–9282. doi: https://doi.org/10.1016/j.arabjc.2020.11.010
  37. Li, S., Qi, B., Luo, J., Zhuang, Y., Wan, Y. (2021). Ultrafast selective adsorption of pretreatment inhibitors from lignocellulosic hydrolysate with metal-organic frameworks: Performance and adsorption mechanisms. Separation and Purification Technology, 275, 119183. doi: https://doi.org/10.1016/j.seppur.2021.119183
  38. Chelliah, N. M., Padaikathan, P., Kumar, R. (2019). Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution. Journal of Magnesium and Alloys, 7 (1), 134–143. doi: https://doi.org/10.1016/j.jma.2019.01.005
  39. Verma, C., Olasunkanmi, L. O., Ebenso, E. E., Quraishi, M. A., Obot, I. B. (2016). Adsorption Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies. The Journal of Physical Chemistry C, 120 (21), 11598–11611. doi: https://doi.org/10.1021/acs.jpcc.6b04429
  40. Shamsheera, K. O., Anupama, R. P., Abraham, J. (2020). Computational simulation, surface characterization, adsorption studies and electrochemical investigation on the interaction of guar gum with mild steel in HCl environment. Results in Chemistry, 2, 100054. doi: https://doi.org/10.1016/j.rechem.2020.100054
  41. Noorbakhsh Nezhad, A. H., Davoodi, A., Mohammadi Zahrani, E., Arefinia, R. (2020). The effects of an inorganic corrosion inhibitor on the electrochemical behavior of superhydrophobic micro-nano structured Ni films in 3.5% NaCl solution. Surface and Coatings Technology, 395, 125946. doi: https://doi.org/10.1016/j.surfcoat.2020.125946
  42. Li, H., Zhang, B., Li, Y., Wu, P., Wang, Y., Xie, M. (2022). Effect of novel green inhibitor on corrosion and chemical mechanical polishing properties of cobalt in alkaline slurry. Materials Science in Semiconductor Processing, 146, 106691. doi: https://doi.org/10.1016/j.mssp.2022.106691
  43. Bhardwaj, N., Sharma, P., Guo, L., Dagdag, O., Kumar, V. (2022). Molecular dynamic simulation and Quantum chemical calculation of phytochemicals present in Beta vulgaris and electrochemical behaviour of Beta vulgaris peel extract as green corrosion inhibitor for stainless steel (SS-410) in acidic medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, 127707. doi: https://doi.org/10.1016/j.colsurfa.2021.127707
  44. Subekti, N., Soedarsono, J. W., Riastuti, R., Sianipar, F. D. (2020). Development of environmental friendly corrosion inhibitor from the extract of areca flower for mild steel in acidic media. Eastern-European Journal of Enterprise Technologies, 2 (6 (104)), 34–45. doi: https://doi.org/10.15587/1729-4061.2020.197875
  45. Pramana, R. I., Kusumastuti, R., Soedarsono, J. W., Rustandi, A. (2013). Corrosion Inhibition of Low Carbon Steel by Pluchea Indica Less. in 3.5% NaCL Solution. Advanced Materials Research, 785-786, 20–24. doi: https://doi.org/10.4028/www.scientific.net/amr.785-786.20
  46. Wan, S., Chen, H., Liao, B., Guo, X. (2021). Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution. Journal of the Taiwan Institute of Chemical Engineers, 129, 289–298. doi: https://doi.org/10.1016/j.jtice.2021.10.001
  47. Hsissou, R., Dagdag, O., Abbout, S., Benhiba, F., Berradi, M., El Bouchti, M. et. al. (2019). Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. Journal of Molecular Liquids, 284, 182–192. doi: https://doi.org/10.1016/j.molliq.2019.03.180
  48. Lebrini, M., Lagrenée, M., Vezin, H., Traisnel, M., Bentiss, F. (2007). Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds. Corrosion Science, 49 (5), 2254–2269. doi: https://doi.org/10.1016/j.corsci.2006.10.029
  49. Chauhan, D. S., Quraishi, M. A., Srivastava, V., Haque, J., ibrahimi, B. E. (2021). Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. Journal of Molecular Structure, 1226, 129259. doi: https://doi.org/10.1016/j.molstruc.2020.129259
  50. Shao, H., Yin, X., Zhang, K., Yang, W., Chen, Y., Liu, Y. (2022). N-[2-(3-indolyl)ethyl]-cinnamamide synthesized from cinnamomum cassia presl and alkaloid tryptamine as green corrosion inhibitor for Q235 steel in acidic medium. Journal of Materials Research and Technology, 20, 916–933. doi: https://doi.org/10.1016/j.jmrt.2022.07.122
  51. Fekkar, G. et. al. (2020). Eco-friendly chamaerops humilis l. Fruit extract corrosion inhibitor for mild steel in 1 M HCL. International Journal of Corrosion and Scale Inhibition. doi: https://doi.org/10.17675/2305-6894-2020-9-2-4
  52. Gautam, A., Siva, T., Sathiyanarayanan, S., Gobi, K. V., Subasri, R. (2022). Capped inhibitor-loaded halloysite nanoclay-based self-healing silica coatings for corrosion protection of mild steel. Ceramics International, 48 (20), 30151–30163. doi: https://doi.org/10.1016/j.ceramint.2022.06.288
  53. Fan, J., Zhao, Z., Ding, Z., Liu, J. (2018). Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Advances, 8 (13), 7269–7279. doi: https://doi.org/10.1039/c7ra12615h
  54. Farahati, R., Ghaffarinejad, A., Rezania, H. (Jafar), Mousavi-Khoshdel, S. M., Behzadi, H. (2019). Sulfonated aromatic polyamide as water-soluble polymeric corrosion inhibitor of copper in HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 123626. doi: https://doi.org/10.1016/j.colsurfa.2019.123626
  55. Ramakrishnan, K., Karthikeyan, S., Rajagopal, D. (2022). 2-Methoxy-4-(4-(((6-nitrobenzothiazol-2-yl)amino)methyl)-1-phenyl-1H-pyrazol-3-yl) phenol as powerful anti-corrosion inhibitor substantiated by Langmuir adsorption studies. Materials Letters, 313, 131823. doi: https://doi.org/10.1016/j.matlet.2022.131823
  56. Ullah, S., Bustam, M. A., Assiri, M. A., Al-Sehemi, A. G., Gonfa, G., Mukhtar, A. et. al. (2020). Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study. Microporous and Mesoporous Materials, 294, 109844. doi: https://doi.org/10.1016/j.micromeso.2019.109844
  57. Kundu, S., Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization. Chemical Engineering Journal, 122 (1-2), 93–106. doi: https://doi.org/10.1016/j.cej.2006.06.002
  58. Swenson, H., Stadie, N. P. (2019). Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir, 35 (16), 5409–5426. doi: https://doi.org/10.1021/acs.langmuir.9b00154
Unraveling the study of liquid smoke from rice husks as a green corrosion inhibitor in mild steel under 1 M HCl

Downloads

Published

2022-10-30

How to Cite

Kaban, A., Mayangsari, W., Anwar, M., Maksum, A., Aditiyawarman, T., Soedarsono, J., Ridhova, A., & Riastuti, R. (2022). Unraveling the study of liquid smoke from rice husks as a green corrosion inhibitor in mild steel under 1 M HCl. Eastern-European Journal of Enterprise Technologies, 5(6 (119), 41–53. https://doi.org/10.15587/1729-4061.2022.265086

Issue

Section

Technology organic and inorganic substances