Implementation of deep learning based semantic segmentation method to determine vegetation density

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265807

Keywords:

vegetation density, deep learning, semantic segmentation, classification model, two-dimensional image data

Abstract

The dryness of peatlands is influenced by the density of vegetation. If peatlands are dry, they become vulnerable to a fire risk. To calculate the drought index, professionals must conduct a vegetation density analysis. However, field analysis requires vast amounts of resources. Moreover, the accuracy of the analysis based on satellite data is not adequate. Therefore, this research presents drone-captured two-dimensional image data. The object of this research is The Liang Anggang Protection Forest Block I in Banjarbaru, South Kalimantan, Indonesia. It is surveyed for information on its vegetation cover. Afterwards, There are 300 images of vegetation cover collected and utilized in total. The method of deep learning with semantic segmentation will be used to compare the results of determining methods with expert results as ground truth. The contribution of this study is to determine the optimal performance of deep learning model used for classifying vegetation density into three categories: bare/ungrazed, lightly grazed, and heavily grazed. Performance is evaluated based on correctness and intersection over union (IoU). Obtaining the proper parameters for the classification model using deep learning techniques and comparing the results of the best segmentation model are the objectives of the following contribution. From experimental studies conducted, the optimal momentum parameter value for MobileNetV2, Xception, and Inception-ResNet-v2 is 0.9, and the optimal accuracy performance is 82.69 percent on average. The most appropriate momentum for ResNet 18 architecture is 0.1. The result of semantic segmentation using the DeepLabV3 model with Inception-ResNet-v2 architecture is the optimal model for estimating vegetation density compared to U-Net model.

Author Biographies

Yuslena Sari, Universitas Lambung Mangkurat

Master of Computer Science, Head of Department

Department of Information Technology

Yudi Arifin, Universitas Lambung Mangkurat

Doctor of Silviculture and Forest Ecology, Professor, Vice Rector for Planning, Cooperation and Public Relations

Department of Forestry

Novitasari Novitasari, Universitas Lambung Mangkurat

Doctor of Civil Engineering, Head of Hydraulic Laboratory

Department of Civil Engineering

Mohammad Faisal, Universitas Lambung Mangkurat

Doctor of Bioinformatic, Secretary of Department

Department of Computer Science

References

  1. Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D., Kolka, R. (2017). An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 12 (1). doi: https://doi.org/10.1186/s13021-017-0080-2
  2. Gumbricht, T., Román-Cuesta, R. M., Verchot, L. V., Herold, M., Wittmann, F., Householder, E. et. al. (2017). Tropical and Subtropical Wetlands Distribution version 2. Center for International Forestry Research (CIFOR). doi: https://doi.org/10.17528/CIFOR/DATA.00058
  3. Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., Hansen, M. C. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 4 (8), 730–735. doi: https://doi.org/10.1038/nclimate2277
  4. Hope, G., Chokkalingam, U., Anwar, S. (2005). The Stratigraphy and Fire History of the Kutai Peatlands, Kalimantan, Indonesia. Quaternary Research, 64 (3), 407–417. doi: https://doi.org/10.1016/j.yqres.2005.08.009
  5. Tacconi, L. (2016). Preventing fires and haze in Southeast Asia. Nature Climate Change, 6 (7), 640–643. doi: https://doi.org/10.1038/nclimate3008
  6. Sandhyavitri, A., Amri, R., Fermana, D. (2016). Development of Underground Peat Fire Detection. Proceeding of the First International Conference on Technology, Innovation and Society. doi: https://doi.org/10.21063/ictis.2016.1069
  7. Garcia-Prats, A., Antonio, D. C., Tarcísio, F. J. G., Antonio, M. J. (2015). Development of a Keetch and Byram – Based drought index sensitive to forest management in Mediterranean conditions. Agricultural and Forest Meteorology, 205, 40–50. doi: https://doi.org/10.1016/j.agrformet.2015.02.009
  8. Keetch, J. J., Byram, G. M. (1988). Drought Index. Forest Seruice Research Paper, 36.
  9. Abalo, M., Badabate, D., Fousseni, F., Kpérkouma, W., Koffi, A. (2021). Landscape-based analysis of wetlands patterns in the Ogou River basin in Togo (West Africa). Environmental Challenges, 2, 100013. doi: https://doi.org/10.1016/j.envc.2020.100013
  10. Karlson, M., Gålfalk, M., Crill, P., Bousquet, P., Saunois, M., Bastviken, D. (2019). Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sensing of Environment, 231, 111252. doi: https://doi.org/10.1016/j.rse.2019.111252
  11. Chughtai, A. H., Abbasi, H., Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22, 100482. doi: https://doi.org/10.1016/j.rsase.2021.100482
  12. Meng, S., Wang, X., Hu, X., Luo, C., Zhong, Y. (2021). Deep learning-based crop mapping in the cloudy season using one-shot hyperspectral satellite imagery. Computers and Electronics in Agriculture, 186, 106188. doi: https://doi.org/10.1016/j.compag.2021.106188
  13. Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., Gilabert, M. A. (2020). Understanding deep learning in land use classification based on Sentinel-2 time series. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-74215-5
  14. Tan, J., Zuo, J., Xie, X., Ding, M., Xu, Z., Zhou, F. (2021). MLAs land cover mapping performance across varying geomorphology with Landsat OLI-8 and minimum human intervention. Ecological Informatics, 61, 101227. doi: https://doi.org/10.1016/j.ecoinf.2021.101227
  15. Zaldo-Aubanell, Q., Serra, I., Sardanyés, J., Alsedà, L., Maneja, R. (2021). Reviewing the reliability of Land Use and Land Cover data in studies relating human health to the environment. Environmental Research, 194, 110578. doi: https://doi.org/10.1016/j.envres.2020.110578
  16. Bunyangha, J., Majaliwa, Mwanjalolo. J. G., Muthumbi, Agnes. W., Gichuki, Nathan. N., Egeru, A. (2021). Past and future land use/land cover changes from multi-temporal Landsat imagery in Mpologoma catchment, eastern Uganda. The Egyptian Journal of Remote Sensing and Space Science, 24 (3), 675–685. doi: https://doi.org/10.1016/j.ejrs.2021.02.003
  17. Magnússon, R. Í., Limpens, J., Kleijn, D., van Huissteden, K., Maximov, T. C., Lobry, S., Heijmans, M. M. P. D. (2021). Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Science of The Total Environment, 782, 146877. doi: https://doi.org/10.1016/j.scitotenv.2021.146877
  18. Mao, D., Tian, Y., Wang, Z., Jia, M., Du, J., Song, C. (2021). Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management, 280, 111670. doi: https://doi.org/10.1016/j.jenvman.2020.111670
  19. Su, H., Yao, W., Wu, Z., Zheng, P., Du, Q. (2021). Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 171, 238–252. doi: https://doi.org/10.1016/j.isprsjprs.2020.11.018
  20. Khakim, M. Y. N., Bama, A. A., Yustian, I., Poerwono, P., Tsuji, T., Matsuoka, T. (2020). Peatland subsidence and vegetation cover degradation as impacts of the 2015 El niño event revealed by Sentinel-1A SAR data. International Journal of Applied Earth Observation and Geoinformation, 84, 101953. doi: https://doi.org/10.1016/j.jag.2019.101953
  21. Räsänen, A., Aurela, M., Juutinen, S., Kumpula, T., Lohila, A., Penttilä, T., Virtanen, T. (2019). Detecting northern peatland vegetation patterns at ultra‐high spatial resolution. Remote Sensing in Ecology and Conservation, 6 (4), 457–471. doi: https://doi.org/10.1002/rse2.140
  22. Lin, P., Lu, Q., Li, D., Chen, Y., Zou, Z., Jiang, S. (2019). Artificial intelligence classification of wetland vegetation morphology based on deep convolutional neural network. Natural Resource Modeling, 33 (1). doi: https://doi.org/10.1111/nrm.12248
  23. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y. et. al. (2020). UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1055–1059. doi: https://doi.org/10.1109/icassp40776.2020.9053405
  24. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Lecture Notes in Computer Science, 833–851. doi: https://doi.org/10.1007/978-3-030-01234-2_49
  25. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31 (1), 4278–4284. doi: https://doi.org/10.1609/aaai.v31i1.11231
  26. Bianco, S., Cadene, R., Celona, L., Napoletano, P. (2018). Benchmark Analysis of Representative Deep Neural Network Architectures. IEEE Access, 6, 64270–64277. doi: https://doi.org/10.1109/access.2018.2877890
  27. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60 (6), 84–90. doi: https://doi.org/10.1145/3065386
Implementation of deep learning based semantic segmentation method to determine vegetation density

Downloads

Published

2022-10-30

How to Cite

Sari, Y., Arifin, Y., Novitasari, N., & Faisal, M. (2022). Implementation of deep learning based semantic segmentation method to determine vegetation density. Eastern-European Journal of Enterprise Technologies, 5(2(119), 42–54. https://doi.org/10.15587/1729-4061.2022.265807