Window correction at time series realization of the narrow-band gaussian stochastic process

Authors

  • Анатолий Федорович Величко O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085, Ukraine https://orcid.org/0000-0001-5424-0913
  • Дмитрий Анатольевич Величко O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085, Ukraine https://orcid.org/0000-0003-3353-3754
  • Алексей Валерьевич Вичкань O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085, Ukraine
  • Константин Владимирович Нетребенко O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085, Ukraine https://orcid.org/0000-0001-8873-791X

DOI:

https://doi.org/10.15587/1729-4061.2014.26039

Keywords:

pseudo-random sequences, narrowband signal, envelope method, modeling, statistical radio engineering

Abstract

The paper deals with forming random realizations of a narrowband, stochastic stationary process as time functions on the interval, limited by the received signal duration. Independent values of the envelope and phase functions are used during the formation. For them nodal points with a uniform and the Rayleigh distribution are defined by the multiplicative congruent method. They are set within the given interval at distances greater than the correlation interval. Intermediate points are determined using a widely used spline interpolation. Herewith, there are values that go beyond the theoretical distributions of the amplitude and phase. Using the Hanning window function, the correction of random functions in these areas is introduced. This allows bringing the distribution of the envelope and the phase of the generated realizations to the theoretical laws. The statistical properties of the generated realizations before and after the window correction are studied.

Author Biographies

Анатолий Федорович Величко, O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085

Professor, chief researcher

Department of radiosignal processing

Дмитрий Анатольевич Величко, O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085

PhD, senior researcher

Department of radiosignal processing 

 

Алексей Валерьевич Вичкань, O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085

Junior researcher

Department of radiosignal processing 

 

Константин Владимирович Нетребенко, O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU 12, Proskura st., Kharkov, Ukraine 61085

PhD, research fellow

Department of radiosignal processing

References

  1. Velichko, A. F., Velichko D. A. (1998). Measure and interference suppression retransmitting method with continuous frequency modulated wave. Radioelektronika, 41 (11), 3–12.
  2. Velichko, D. A. (2008). Modeling of a multi-frequency retransmitting system characteristics. Radioelektronica, 51 (2), 14–24.
  3. Velichko, D. A., Velichko, S. A. (2010). A model of a control-measuring system with a guided retransmitter structure. Microwave & Telecommunication Tecnology, 1023–1024.
  4. Prokhorov, S. A. (2001). Mathematical description and modeling of stochastic processes. Samara: Samara State Aerospace University, 209.
  5. Bunimovich, V. I. (1951). Fluctuating processes in radio receivers. Moscow: Soviet Radio, 360.
  6. Dyakonov, V. P. (2010). Matlab R2007/2008/2009 for radio-engineers. Moscow: DMK Press, 976.
  7. Middleton, D. (n.d.). An Introduction to Statistical Communication Theory. doi:10.1109/9780470544112
  8. Levin, B. R. (1966). Theoretic fundamentals of stochastic radiotechnics. Moscow: Soviet Radio, 728.
  9. Sveshnikov, A. A. (1968). Applied methods of stochastic function theory. Moscow: Science, 464.
  10. Samotonin, D. N., Bidenko S. I. (2004). Spline interpolation of relief eminences in radio wave propagation modeling using vector geo-data. Informa-tion and Controlling Systems, 3, 22–30.
  11. Sidenko, L. A. (2009). Computer graphics and geometric modeling. St. Petersburg: Piter, 224.
  12. Ketkov, Y. L., Ketkov, A. Y., Shults, M. M. (2005). MATLAB 7: Programming and calculus of approximations. St. Petersburg: BHV Peterburg, 752.
  13. Bronshtein, I. N., Semendyaev, K. A. (1981). A mathematics handbook for scholars and engineers. Moscow: Science, 544.
  14. Handbook of mathematical functions with formulas, graphs and mathematical tables. (1964). Moscow: Science, 832.
  15. Ahlberg, J. H., Nilson E. N., Walsh J. L. (1967). The theory of splines and their applications. New York: Academic Press, 284.
  16. De Boor, K. (1985). A practical guide to splines. Moscow: Radio and Communication, 304.
  17. Polovko, A. M., Butusov, P. N. (2004). Interpolation: Methods and computer application. St. Petersburg: BHV-Peterburg, 320.
  18. Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. TIIER, 100 (1), 60–96.

Published

2014-07-18

How to Cite

Величко, А. Ф., Величко, Д. А., Вичкань, А. В., & Нетребенко, К. В. (2014). Window correction at time series realization of the narrow-band gaussian stochastic process. Eastern-European Journal of Enterprise Technologies, 4(9(70), 32. https://doi.org/10.15587/1729-4061.2014.26039

Issue

Section

Information and controlling system