Identifying the effect of aromatic compounds on the combustion characteristics of crude coconut oil droplet

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.272289

Keywords:

droplet combustion, crude coconut oil, bio-additives, aromatic compound

Abstract

For now, energy sources uses are still dominated by fossil fuels, whose availability is limited and continues to decline. Therefore, new alternative energy is needed to reduce dependence on fossil fuels. Crude vegetable oil is one alternative energy source that can be utilized as a substitute for fossil fuels because vegetable oil has a composition almost similar to fossil fuel. Crude coconut oil is an alternative to biodiesel to reduce dependency on fossil fuels. The combustion reaction of crude coconut oil is tricky because it has bonds saturated chain, so a substance is needed to weaken the carbon chain to increase the burning rate. The burning rate of coconut oil droplets has been investigated experimentally by adding clove oil and eucalyptus oil bio-additives. Tests were carried out with single droplets suspended on a thermocouple at atmospheric pressure and room temperature and ignited with a hot wire. The addition of clove oil and eucalyptus oil as bio-additives in crude coconut oil was 100 ppm and 300 ppm, respectively. The suspended droplet combustion method was chosen to increase the contact area between the air and fuel so that the reactivity of the fuel molecules increases. The results showed that the eugenol compounds in clove oil and cineol compounds in eucalyptus oil were both aromatic and had an unsymmetrical carbon chain geometry structure. Therefore, this factor has the potential to accelerate the occurrence of effective collisions between fuel molecules; thus, the fuel is flammable, as evidenced by the increased burning rate. Moreover, from the observations, it was found that the highest burning rate was achieved in both bio-additives with a concentration of 300 ppm

Author Biographies

Helen Riupassa, Jayapura University of Science and Technology

Senior Lecturer

Department of Mechanical Engineering

Suyatno Suyatno, Jayapura University of Science and Technology

Associate Professor

Department of Mechanical Engineering

Hendry Yoshua Nanlohy, Jayapura University of Science and Technology

Associate Professor

Department of Mechanical Engineering

References

  1. Chen, S., Kharrazi, A., Liang, S., Fath, B. D., Lenzen, M., Yan, J. (2020). Advanced approaches and applications of energy footprints toward the promotion of global sustainability. Applied Energy, 261, 114415. doi: https://doi.org/10.1016/j.apenergy.2019.114415
  2. Sazhin, S. S. (2017). Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems. Fuel, 196, 69–101. doi: https://doi.org/10.1016/j.fuel.2017.01.048
  3. Riupassa, H., Nanulaitta, N. Jm., Taba, H. Tj., Katjo, B., Haurissa, J., Trismawati, Nanlohy, H. Y. (2022). The effect of graphene oxide nanoparticles as a metal based catalyst on the ignition characteristics of waste plastic oil. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0075009
  4. Yilmaz, N., Atmanli, A., Vigil, F. M. (2018). Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine. Fuel, 212, 462–469. doi: https://doi.org/10.1016/j.fuel.2017.10.050
  5. Muelas, Á., Remacha, P., Ballester, J. (2019). Droplet combustion and sooting characteristics of UCO biodiesel, heating oil and their mixtures under realistic conditions. Combustion and Flame, 203, 190–203. doi: https://doi.org/10.1016/j.combustflame.2019.02.014
  6. Emberger, P., Hebecker, D., Pickel, P., Remmele, E., Thuneke, K. (2015). Ignition and combustion behaviour of vegetable oils after injection in a constant volume combustion chamber. Biomass and Bioenergy, 78, 48–61. doi: https://doi.org/10.1016/j.biombioe.2015.04.009
  7. Xu, Y., Keresztes, I., Condo, A. M., Phillips, D., Pepiot, P., Avedisian, C. T. (2016). Droplet combustion characteristics of algae-derived renewable diesel, conventional #2 diesel, and their mixtures. Fuel, 167, 295–305. doi: https://doi.org/10.1016/j.fuel.2015.11.036
  8. Kale, R., Banerjee, R. (2019). Understanding spray and atomization characteristics of butanol isomers and isooctane under engine like hot injector body conditions. Fuel, 237, 191–201. doi: https://doi.org/10.1016/j.fuel.2018.09.142
  9. Aljabri, H., Liu, X., Al-lehaibi, M., Cabezas, K. M., AlRamadan, A. S., Badra, J., Im, H. G. (2022). Fuel flexibility potential for isobaric combustion in a compression ignition engine: A computational study. Fuel, 316, 123281. doi: https://doi.org/10.1016/j.fuel.2022.123281
  10. Kalyna, V., Stankevych, S., Myronenko, L., Hrechko, A., Bogatov, O., Bragin, O. et al. (2022). Improvement of the technology of fatty acids obtaining from oil and fat production waste. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 6–12. doi: https://doi.org/10.15587/1729-4061.2022.254358
  11. Bliznjuk, O., Masalitina, N., Mezentseva, I., Novozhylova, T., Korchak, M., Haliasnyi, I. et al. (2022). Development of safe technology of obtaining fatty acid monoglycerides using a new catalyst. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 13–18. doi: https://doi.org/10.15587/1729-4061.2022.253655
  12. Liu, Y. C., Xu, Y., Hicks, M. C., Avedisian, C. T. (2016). Comprehensive study of initial diameter effects and other observations on convection-free droplet combustion in the standard atmosphere for n-heptane, n-octane, and n-decane. Combustion and Flame, 171, 27–41. doi: https://doi.org/10.1016/j.combustflame.2016.05.013
  13. Plank, M., Wachtmeister, G., Thuneke, K., Remmele, E., Emberger, P. (2017). Effect of fatty acid composition on ignition behavior of straight vegetable oils measured in a constant volume combustion chamber apparatus. Fuel, 207, 293–301. doi: https://doi.org/10.1016/j.fuel.2017.06.089
  14. Nanlohy, H. Y., Wardana, I. N. G., Yamaguchi, M., Ueda, T. (2020). The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets. Fuel, 279, 118373. doi: https://doi.org/10.1016/j.fuel.2020.118373
  15. Ghamari, M., Ratner, A. (2017). Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles. Fuel, 188, 182–189. doi: https://doi.org/10.1016/j.fuel.2016.10.040
  16. Wang, X., Dai, M., Yan, J., Chen, C., Jiang, G., Zhang, J. (2019). Experimental investigation on the evaporation and micro-explosion mechanism of jatropha vegetable oil (JVO) droplets. Fuel, 258, 115941. doi: https://doi.org/10.1016/j.fuel.2019.115941
  17. Meng, K., Fu, W., Lei, Y., Zhao, D., Lin, Q., Wang, G. (2019). Study on micro-explosion intensity characteristics of biodiesel, RP-3 and ethanol mixed droplets. Fuel, 256, 115942. doi: https://doi.org/10.1016/j.fuel.2019.115942
  18. Nanlohy, H. Y., Wardana, I. N. G., Hamidi, N., Yuliati, L., Ueda, T. (2018). The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets. Fuel, 220, 220–232. doi: https://doi.org/10.1016/j.fuel.2018.02.001
  19. Wardoyo, Widodo, A. S., Wijayanti, W., Wardana, I. N. G. (2021). The Role of Areca catechu Extract on Decreasing Viscosity of Vegetable Oils. The Scientific World Journal, 2021, 1–8. doi: https://doi.org/10.1155/2021/8827427
  20. Sakthivel, P., Subramanian, K. A., Mathai, R. (2020). Experimental study on unregulated emission characteristics of a two-wheeler with ethanol-gasoline blends (E0 to E50). Fuel, 262, 116504. doi: https://doi.org/10.1016/j.fuel.2019.116504
  21. Liu, Z., Sun, P., Du, Y., Yu, X., Dong, W., Zhou, J. (2021). Improvement of combustion and emission by combined combustion of ethanol premix and gasoline direct injection in SI engine. Fuel, 292, 120403. doi: https://doi.org/10.1016/j.fuel.2021.120403
  22. Pradhan, P., Raheman, H., Padhee, D. (2014). Combustion and performance of a diesel engine with preheated Jatropha curcas oil using waste heat from exhaust gas. Fuel, 115, 527–533. doi: https://doi.org/10.1016/j.fuel.2013.07.067
  23. Wardana, I. N. G. (2010). Combustion characteristics of jatropha oil droplet at various oil temperatures. Fuel, 89 (3), 659–664. doi: https://doi.org/10.1016/j.fuel.2009.07.002
  24. Han, K., Chen, H., Yang, B., Ma, X., Song, G., Li, Y. (2017). Experimental investigation on droplet burning characteristics of diesel-benzyl azides blend. Fuel, 190, 32–40. doi: https://doi.org/10.1016/j.fuel.2016.10.102
  25. Nanlohy, H. Y., Riupassa, H., Mini, M., Taba, H. T., Katjo, B., Nanulaitta, N. J., Yamaguchi, M. (2021). Performance and Emissions Analysis of BE85-Gasoline Blends on Spark Ignition Engine. Automotive Experiences, 5 (1), 40–48. doi: https://doi.org/10.31603/ae.6116
  26. Suyatno, Riupassa, H., Marianingsih, S., Nanlohy, H. Y. (2023). Characteristics of SI engine fueled with BE50-Isooctane blends with different ignition timings. Heliyon, 9 (1), e12922. doi: https://doi.org/10.1016/j.heliyon.2023.e12922
  27. Botero, M. L., Huang, Y., Zhu, D. L., Molina, A., Law, C. K. (2011). Droplet Combustion of Ethanol, Diesel, Castor Oil Biodiesel, and Their Mixtures. 7th US National Combustion Meeting of the Combustion Institute Hosted by the Georgia Institute of Technology. Atlanta.
  28. Angeloni, M., Remacha, P., Martínez, A., Ballester, J. (2016). Experimental investigation of the combustion of crude glycerol droplets. Fuel, 184, 889–895. doi: https://doi.org/10.1016/j.fuel.2016.06.045
  29. Westbrook, C. K., Pitz, W. J., Sarathy, S. M., Mehl, M. (2013). Detailed chemical kinetic modeling of the effects of C C double bonds on the ignition of biodiesel fuels. Proceedings of the Combustion Institute, 34 (2), 3049–3056. doi: https://doi.org/10.1016/j.proci.2012.05.025
  30. Riupassa, H., Suyatno, S., Nanlohy, H. Y., Sanata, A., Trismawati, T., Subagyo, R. et al. (2023). Effects of Eugenol and Cineol Compound on Diffusion Burning Rate Characteristics of Crude Coconut Oil Droplet. Automotive Experiences, 6 (1), 59–67. doi: https://doi.org/10.31603/ae.8150
  31. Nanlohy, H. Y., Riupassa, H., Rasta, I. M., Yamaguchi, M. (2020). An Experimental Study on the Ignition Behavior of Blended Fuels Droplets with Crude Coconut Oil and Liquid Metal Catalyst. Automotive Experiences, 3 (2). doi: https://doi.org/10.31603/ae.v3i2.3481
  32. Faik, A. M.-D., Zhang, Y. (2018). Multicomponent fuel droplet combustion investigation using magnified high speed backlighting and shadowgraph imaging. Fuel, 221, 89–109. doi: https://doi.org/10.1016/j.fuel.2018.02.054
  33. Ikegami, M., Xu, G., Ikeda, K., Honma, S., Nagaishi, H., Dietrich, D. L., Takeshita, Y. (2003). Distinctive combustion stages of single heavy oil droplet under microgravity. Fuel, 82 (3), 293–304. doi: https://doi.org/10.1016/s0016-2361(02)00257-0
  34. Perdana, D., Hatta, M., Rosidin, M. K., Hanifudin, M. (2022). The influence of various preheating and direction of magnetic field on combustion characteristics of palm oil droplets for boiler combustion in power generation system. Eastern-European Journal of Enterprise Technologies, 6 (8 (120)), 73–83. doi: https://doi.org/10.15587/1729-4061.2022.267282
  35. Ma, Z., Li, Y., Li, Z., Du, W., Yin, Z., Xu, S. (2018). Evaporation and combustion characteristics of hydrocarbon fuel droplet in sub- and super-critical environments. Fuel, 220, 763–768. doi: https://doi.org/10.1016/j.fuel.2018.02.073
  36. Nanlohy, H. Y., Wardana, I. N. G., Hamidi, N., Yuliati, L. (2018). Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst. IOP Conference Series: Materials Science and Engineering, 299, 012090. doi: https://doi.org/10.1088/1757-899x/299/1/012090
  37. Nanlohy, H. Y., Trismawati (2022). The role of fatty acid of Morinda citrifolia oil as surface-active chemicals on the deinking process of waste paper. Materialia, 23, 101436. doi: https://doi.org/10.1016/j.mtla.2022.101436
  38. Puhan, S., Saravanan, N., Nagarajan, G., Vedaraman, N. (2010). Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass and Bioenergy, 34 (8), 1079–1088. doi: https://doi.org/10.1016/j.biombioe.2010.02.017
  39. Botero, M. L., Huang, Y., Zhu, D. L., Molina, A., Law, C. K. (2012). Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures. Fuel, 94, 342–347. doi: https://doi.org/10.1016/j.fuel.2011.10.049
  40. Nanlohy, H. Y. (2021). Comparative Studies on Combustion Characteristics of Blended Crude Jatropha Oil with Magnetic Liquid Catalyst and DEX under Normal Gravity Condition. Journal of Mechanical Engineering Science and Technology, 5 (2), 79. doi: https://doi.org/10.17977/um016v5i22021p079
  41. Zhu, M., Ma, Y., Zhang, D. (2013). Effect of a homogeneous combustion catalyst on combustion characteristics of single droplets of diesel and biodiesel. Proceedings of the Combustion Institute, 34 (1), 1537–1544. doi: https://doi.org/10.1016/j.proci.2012.06.055
  42. Knothe, G., Matheaus, A. C., Ryan, T. W. (2003). Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel, 82 (8), 971–975. doi: https://doi.org/10.1016/s0016-2361(02)00382-4
  43. Xu, G., Ikegami, M., Honma, S., Ikeda, K., Dietrich, D. L., Struk, P. M. (2004). Interactive influences of convective flow and initial droplet diameter on isolated droplet burning rate. International Journal of Heat and Mass Transfer, 47 (8-9), 2029–2035. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.035
  44. Imamura, O., Kubo, Y., Osaka, J., Sato, J., Tsue, M., Kono, M. (2005). A study on single fuel droplets combustion in vertical direct current electric fields. Proceedings of the Combustion Institute, 30 (2), 1949–1956. doi: https://doi.org/10.1016/j.proci.2004.08.017
  45. Singh, G., Esmaeilpour, M., Ratner, A. (2019). The effect of acetylene black on droplet combustion and flame regime of petrodiesel and soy biodiesel. Fuel, 246, 108–116. doi: https://doi.org/10.1016/j.fuel.2019.02.115
Identifying the effect of aromatic compounds on the combustion characteristics of crude coconut oil droplet

Downloads

Published

2023-04-30

How to Cite

Riupassa, H., Suyatno, S., & Nanlohy, H. Y. (2023). Identifying the effect of aromatic compounds on the combustion characteristics of crude coconut oil droplet. Eastern-European Journal of Enterprise Technologies, 2(6 (122), 6–14. https://doi.org/10.15587/1729-4061.2023.272289

Issue

Section

Technology organic and inorganic substances