Development of the matched filtration of a blurred digital image using its typical form

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.273674

Keywords:

image processing, blurred image, matched filter, transfer function, OLS-evaluation of parameters

Abstract

The appearance of "blurred" digital images is a consequence of the violation of the immobility of the camera during the shooting of the objects under study. To this end, a procedure was devised for matched filtering of the blurred digital image of the object using its typical image form in a series of frames.

This procedure is based on the automated formation of a typical form of a digital image, as well as on the choice of special parameters for the transfer function of the matched filter. Adapting the procedure specifically to the typical form makes it possible to perform a more accurate assessment of the required parameters of the blurred digital image compared to the analytically set profile.

The formation of a typical form makes it possible to take into account the features of the very formation of the blurred image on each frame of the original series. Based on this, a more accurate assessment of the initial approximation of the parameters of all Gaussians of the object image is performed. In practice, matched filtering makes it possible to highlight blurred images of objects against the background of substrate noise. Also, using the matched filtering procedure makes it possible to improve the segmentation of images of reference objects and reduce the number of false detections.

The devised procedure for the matched filtering of a blurred digital image using its typical form has been tested in practice as part of the research in the framework of the CoLiTec project. It was implemented in the intraframe processing unit of the Lemur software for the automated detection of new and tracking of known objects. Owing to the use of Lemur software and the proposed computational procedure introduced into it, more than 700,000 measurements of various objects under study were successfully processed and identified

Author Biographies

Sergii Khlamov, SoftServe

PhD, Test Automation Lead

Vadym Savanevych, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor

Department of Systems Engineering

Vladimir Vlasenko, National Space Facilities Control and Test Center

PhD

Space Research and Communications Center

Oleksandr Briukhovetskyi, National Space Facilities Control and Test Center

PhD

Western Center of Radiotechnical Surveillance

Tetiana Trunova, Kharkiv National University of Radio Electronics

Engineer, Assistant

Department of Media Systems and Technologies

Ihor Levykin, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences

Department of Media Systems and Technologies

Viktoriia Shvedun, National University of Civil Defence of Ukraine

Doctor of Science in Public Administration, Professor, Head of Scientific Department

Scientific Department of Management Problems in the Field of Civil Protection

Iryna Tabakova, Kharkiv National University of Radio Electronics

PhD, Associate Professor

Department of Media Systems and Technologies

References

  1. Dearborn, D. P. S., Miller, P. L. (2014). Defending Against Asteroids and Comets. Handbook of Cosmic Hazards and Planetary Defense, 1–18. doi: https://doi.org/10.1007/978-3-319-02847-7_59-1
  2. Mykhailova, L., Savanevych, V., Sokovikova, N., Bezkrovniy, M., Khlamov, S., Pogorelov, A. (2014). Method of maximum likelihood estimation of compact group objects location on CCD-frame. Eastern-European Journal of Enterprise Technologies, 5 (4 (71)), 16–21. doi: https://doi.org/10.15587/1729-4061.2014.28028
  3. Savanevych, V. E., Khlamov, S. V., Akhmetov, V. S., Briukhovetskyi, A. B., Vlasenko, V. P., Dikov, E. N. et al. (2022). CoLiTecVS software for the automated reduction of photometric observations in CCD-frames. Astronomy and Computing, 40, 100605. doi: https://doi.org/10.1016/j.ascom.2022.100605
  4. Akhmetov, V., Khlamov, S., Dmytrenko, A. (2018). Fast Coordinate Cross-Match Tool for Large Astronomical Catalogue. Advances in Intelligent Systems and Computing III, 3–16. doi: https://doi.org/10.1007/978-3-030-01069-0_1
  5. Vavilova, I., Pakuliak, L., Babyk, I., Elyiv, A., Dobrycheva, D., Melnyk, O. (2020). Surveys, Catalogues, Databases, and Archives of Astronomical Data. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 57–102. doi: https://doi.org/10.1016/b978-0-12-819154-5.00015-1
  6. Cavuoti, S., Brescia, M., Longo, G. (2012). Data mining and knowledge discovery resources for astronomy in the web 2.0 age. Software and Cyberinfrastructure for Astronomy II. doi: https://doi.org/10.1117/12.925321
  7. Chalyi, S., Levykin, I., Biziuk, A., Vovk, A., Bogatov, I. (2020). Development of the technology for changing the sequence of access to shared resources of business processes for process management support. Eastern-European Journal of Enterprise Technologies, 2 (3 (104)), 22–29. doi: https://doi.org/10.15587/1729-4061.2020.198527
  8. Khlamov, S., Savanevych, V. (2020). Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 331–345. doi: https://doi.org/10.1016/b978-0-12-819154-5.00030-8
  9. Smith, G. E. (2010). Nobel Lecture: The invention and early history of the CCD. Reviews of Modern Physics, 82 (3), 2307–2312. doi: https://doi.org/10.1103/revmodphys.82.2307
  10. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Oryshych, S. (2016). Development of computational method for detection of the object’s near-zero apparent motion on the series of ccd-frames. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 41–48. doi: https://doi.org/10.15587/1729-4061.2016.65999
  11. Kuz'min, S. Z. (2000). Tsifrovaya radiolokatsiya. Vvedenie v teoriyu. Kyiv: Izdatel'stvo KvіTS, 428.
  12. Klette, R. (2014). Concise computer vision. An Introduction into Theory and Algorithms. Springer, 429. doi: https://doi.org/10.1007/978-1-4471-6320-6
  13. Kirichenko, L., Zinchenko, P., Radivilova, T. (2020). Classification of Time Realizations Using Machine Learning Recognition of Recurrence Plots. Lecture Notes in Computational Intelligence and Decision Making, 687–696. doi: https://doi.org/10.1007/978-3-030-54215-3_44
  14. Akhmetov, V., Khlamov, S., Khramtsov, V., Dmytrenko, A. (2019). Astrometric Reduction of the Wide-Field Images. Advances in Intelligent Systems and Computing, 896–909. doi: https://doi.org/10.1007/978-3-030-33695-0_58
  15. Belov, L. A. (2021). Radioelektronika. Formirovanie stabil'nykh chastot i signalov. Moscow: Izdatel'stvo Yurayt, 268.
  16. Bishop, C. M. (2013). Model-based machine learning. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (1984), 20120222. doi: https://doi.org/10.1098/rsta.2012.0222
  17. Akhmetov, V., Khlamov, S., Tabakova, I., Hernandez, W., Nieto Hipolito, J. I., Fedorov, P. (2019). New approach for pixelization of big astronomical data for machine vision purpose. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). doi: https://doi.org/10.1109/isie.2019.8781270
  18. Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., Terzopoulos, D. (2021). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (7). doi: https://doi.org/10.1109/tpami.2021.3059968
  19. Dadkhah, M., Lyashenko, V. V., Deineko, Z. V., Shamshirband, S., Jazi, M. D. (2019). Methodology of wavelet analysis in research of dynamics of phishing attacks. International Journal of Advanced Intelligence Paradigms, 12 (3/4), 220. doi: https://doi.org/10.1504/ijaip.2019.098561
  20. Kirichenko, L., Saif, A., Radivilova, T. (2020). Generalized Approach to Analysis of Multifractal Properties from Short Time Series. International Journal of Advanced Computer Science and Applications, 11 (5). doi: https://doi.org/10.14569/ijacsa.2020.0110527
  21. Burger, W., Burge, M. (2010). Principles of digital image processing: core algorithms. Springer, 332. doi: https://doi.org/10.1007/978-1-84800-195-4
  22. Steger, C., Ulrich, M., Wiedemann, C. (2018). Machine vision algorithms and applications. John Wiley & Sons, 516.
  23. Soyfer, V. A. (Ed.) (2003). Metody komp'yuternoy obrabotki izobrazheniy. Moscow: Fizmatlit, 784.
  24. Rubin, B. (2015). Introduction to Radon transforms. With Elements of Fractional Calculus and Harmonic Analysis. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 596.
  25. Wang, J., Cai, D., Wen, Y. (2011). Comparison of matched filter and dechirp processing used in Linear Frequency Modulation. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering. doi: https://doi.org/10.1109/ccieng.2011.6008069
  26. Jorgensen, B. (2012). Statistical properties of the generalized inverse Gaussian distribution. Springer, 188. doi: https://doi.org/10.1007/978-1-4612-5698-4
  27. Khlamov, S., Vlasenko, V., Savanevych, V., Briukhovetskyi, O., Trunova, T., Chelombitko, V., Tabakova, I. (2022). Development of computational method for matched filtration with analytical profile of the blurred digital image. Eastern-European Journal of Enterprise Technologies, 5 (4 (119)), 24–32. doi: https://doi.org/10.15587/1729-4061.2022.26530
  28. Savanevych, V., Khlamov, S., Vlasenko, V., Deineko, Z., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Formation of a typical form of an object image in a series of digital frames. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 51–59. doi: https://doi.org/10.15587/1729-4061.2022.266988
  29. Lemur software. CoLiTec. Available at: https://colitec.space/
  30. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Pohorelov, A., Vlasenko, V., Dikov, E. (2018). CoLiTec Software for the Astronomical Data Sets Processing. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478504
  31. Kashuba, S., Tsvetkov, M., Bazyey, N., Isaeva, E., Golovnia, V. (2018). The Simeiz plate collection of the ODESSA astronomical observatory. Proceedings of the XI Bulgarian-Serbian Astronomical Conference, 207–216.
  32. Parimucha, Š., Savanevych, V. E., Briukhovetskyi, O. B., Khlamov, S. V., Pohorelov, A. V., Vlasenko, V. P. et al. (2019). CoLiTecVS - A new tool for an automated reduction of photometric observations. Contributions of the Astronomical Observatory Skalnate Pleso, 49 (2), 151–153. Available at: https://www.ta3.sk/caosp/Eedition/FullTexts/vol49no2/pp151-153.pdf
  33. Mingmuang, Y., Tummuangpak, P., Asanok, K., Jaroenjittichai, P. (2019). The mass distribution and the rotation curve of the Milky Way Galaxy using NARIT 4.5 m small radio telescope and the 2.3 m Onsala radio telescope. Journal of Physics: Conference Series, 1380 (1), 012028. doi: https://doi.org/10.1088/1742-6596/1380/1/012028
  34. Sergienko, A. B. (2011). Tsifrovaya obrabotka signalov. Sankt-Peterburg: BKhV-Peterburg, 768.
  35. Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. Moscow: FIZMATLI, 816.
  36. Le, D.-H., Pham, C.-K., Nguyen, T. T. T., Bui, T. T. (2012). Parameter extraction and optimization using Levenberg-Marquardt algorithm. 2012 Fourth International Conference on Communications and Electronics (ICCE). doi: https://doi.org/10.1109/cce.2012.6315945
  37. Gonzalez, R., Woods, R. (2018). Digital image processing. New York, NY: Pearson, 1168.
  38. Ivanov, M. T., Sergienko, A. B., Ushakov, V. N. (2021). Radiotekhnicheskie tsepi i signaly. Sankt-Peterburg: Piter, 336.
  39. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Data Mining of the Astronomical Images by the CoLiTec Software. CEUR Workshop Proceedings, 3171, 1043–1055.
  40. Zhang, Y., Zhao, Y., Cui, C. (2002). Data mining and knowledge discovery in database of astronomy. Progress in Astronomy, 20 (4), 312–323.
  41. Rao, K. R., Kim, D. N., Hwang, J.-J. (2010). Fast Fourier Transform - Algorithms and Applications. Springer, 426. doi: https://doi.org/10.1007/978-1-4020-6629-0
  42. Buslov, P., Shvedun, V., Streltsov, V. (2018). Modern Tendencies of Data Protection in the Corporate Systems of Information Consolidation. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2018.8632089
  43. Рetrychenko, A., Levykin, I., Iuriev, I. (2021). Improving a method for selecting information technology services. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 32–43. doi: https://doi.org/10.15587/1729-4061.2021.229983
  44. Baranova, V., Zeleniy, O., Deineko, Z., Bielcheva, G., Lyashenko, V. (2019). Wavelet Coherence as a Tool for Studying of Economic Dynamics in Infocommunication Systems. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). doi: https://doi.org/10.1109/picst47496.2019.9061301
  45. Dombrovska, S., Shvedun, V., Streltsov, V., Husarov, K. (2018). The prospects of integration of the advertising market of Ukraine into the global advertising business. Problems and Perspectives in Management, 16 (2), 321–330. doi: https://doi.org/10.21511/ppm.16(2).2018.29
Development of the matched filtration of a blurred digital image using its typical form

Downloads

Published

2023-02-28

How to Cite

Khlamov, S., Savanevych, V., Vlasenko, V., Briukhovetskyi, O., Trunova, T., Levykin, I., Shvedun, V., & Tabakova, I. (2023). Development of the matched filtration of a blurred digital image using its typical form. Eastern-European Journal of Enterprise Technologies, 1(9 (121), 62–71. https://doi.org/10.15587/1729-4061.2023.273674

Issue

Section

Information and controlling system