Level of fire danger of the local territory

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276653

Keywords:

fire risk, local territory, fire station, service area, neural network, population density

Abstract

The object of the study is the fire risk of the local area. The problem to be solved is to take into account most of the significant parameters in the territorial placement of fire-rescue units of different functional capacities. As part of the solution to this problem, a technique for assessing the fire risk of a large-scale local area has been developed. The methodology is focused on local territories of a large area with a low population density. A special feature of the proposed method is the differentiated fire risk assessment of each point of the surface plane. For such an assessment, the parameters that are decisive from the point of view of impact on the fire hazard are analyzed and structured. The specified factors include the spatial distribution of population density and buildings, the transport and communication network, the spatial distribution of the density and type of vegetation, and statistical data on landscape fires. The use of existing geo-informational resources in real time is foreseen. A new approach of ranking the fire risk of the elementary plane of the territory in accordance with the necessary number of resources of rescue units to ensure the appropriate level of safety is proposed. Neural network data processing methods were used to compare local area parameters with fire risk ranks. A neural network capable of comparing the fire risk of the territory with its parameters was obtained. The functionality of the developed methodology was tested and the fire risk levels of an arbitrary area were graded with an average degree of correlation of 0.97. The proposed method allows for assessment and correction of the state of provision of local territories with civil protection resources. The developed methodology is especially relevant when creating new fire and rescue units of territorial communities.

Author Biographies

Maksym Kustov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Associate Professor

Research Center

Oleg Fedoryaka, National University of Civil Defence of Ukraine

Adjunct

Viacheslav Kononovych, National University of Civil Defence of Ukraine

PhD

Department of Physical Training

Batyr Khalmuradov, National Aviation University

PhD, Professor

Department of Civil and Industrial Safety

Pavlo Borodych, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Service and Training

Tymur Kurtseitov, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

Doctor of Technical Sciences, Professor

Department of Electromagnetic Struggle

Anatolii Nikitin, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD

Department of Operational and Combat Support

Valentyn Romaniuk, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD

Department of Operational and Combat Support

Ivan Meshcheriakov, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

Adjunct

Department of Operational and Combat Support

Julia Veretennikova, O. M. Beketov National University of Urban Economy in Kharkiv

Head of Laboratory

Department of Materials Science and Engineering of Composite Structures

References

  1. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: https://doi.org/10.15587/1729-4061.2017.85847
  2. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
  3. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 4–17. doi: https://doi.org/10.15587/1729-4061.2018.127829
  4. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: http://doi.org/10.15587/978-617-7319-43-5
  5. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 91 (1), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654
  6. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
  7. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.179
  8. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: https://doi.org/10.1051/e3sconf/201912301012
  9. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
  10. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/6849
  11. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/1633
  12. Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. doi: https://doi.org/10.15587/1729-4061.2020.213892
  13. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  14. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  15. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  16. Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, I. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Scientific Bulletin of National Mining University, 1, 99–105. doi: https://doi.org/10.29202/nvngu/2018-1/7
  17. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  18. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  19. Xia, Z., Li, H., Chen, Y., Yu, W. (2019). Integrating Spatial and Non-Spatial Dimensions to Measure Urban Fire Service Access. ISPRS International Journal of Geo-Information, 8 (3), 138. doi: https://doi.org/10.3390/ijgi8030138
  20. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
  21. Dong, X., Li, Y., Pan, Y., Huang, Y., Cheng, X. (2018). Study on Urban Fire Station Planning based on Fire Risk Assessment and GIS Technology. Procedia Engineering, 211, 124–130. doi: https://doi.org/10.1016/j.proeng.2017.12.129
  22. Liu, Z.-G., Li, X.-Y., Jomaas, G. (2022). Effects of governmental data governance on urban fire risk: A city-wide analysis in China. International Journal of Disaster Risk Reduction, 78, 103138. doi: https://doi.org/10.1016/j.ijdrr.2022.103138
  23. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  24. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  25. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  26. Resolution of the CMU No. 715 05.09.2018. On the approval of the criteria by which the degree of risk from economic activity is assessed and the periodicity of planned measures of state supervision (control) in the field of man-made and fire safety by the State Service for Emergency Situations is determined (2018). Kyiv.
  27. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  28. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  29. Jain, S., Jain, S. S., Jain, G. (2017). Traffic Congestion Modelling Based on Origin and Destination. Procedia Engineering, 187, 442–450. doi: https://doi.org/10.1016/j.proeng.2017.04.398
  30. Dubinin, D., Lisniak, A., Shcherbak, S., Cherkashyn, O., Beliuchenko, D., Hovalenkov, S. et al. (2022). Research and justification of the time for conducting operational actions by fire and rescue units to rescue people in a fire. Sigurnost, 64 (1), 35–46. doi: https://doi.org/10.31306/s.64.1.5
  31. Matthews, P. (2018). Station design: a GIS approach to fire station and EMS projects. Firehouse. Available at: https://www.firehouse.com/stations/news/21011087/station-design-a-gis-approach-to-fire-station-and-ems-projects
  32. Liu, X., Wang, X., Wright, G., Cheng, J., Li, X., Liu, R. (2017). A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, 6 (2), 53. doi: https://doi.org/10.3390/ijgi6020053
  33. Keane, R. E., Drury, S. A., Karau, E. C., Hessburg, P. F., Reynolds, K. M. (2010). A method for mapping fire hazard and risk across multiple scales and its application in fire management. Ecological Modelling, 221 (1), 2–18. doi: https://doi.org/10.1016/j.ecolmodel.2008.10.022
  34. Ma, C., Zhou, J., Xu, X. (Daniel), Xu, J. (2020). Evolution Regularity Mining and Gating Control Method of Urban Recurrent Traffic Congestion: A Literature Review. Journal of Advanced Transportation, 2020, 1–13. doi: https://doi.org/10.1155/2020/5261580
  35. Jia, X., Gao, Y., Wei, B., Wang, S., Tang, G., Zhao, Z. (2019). Risk Assessment and Regionalization of Fire Disaster Based on Analytic Hierarchy Process and MODIS Data: A Case Study of Inner Mongolia, China. Sustainability, 11 (22), 6263. doi: https://doi.org/10.3390/su11226263
  36. Fire Information for Resource Management System (FIRMS). Available at: https://firms.modaps.eosdis.nasa.gov
  37. Global Fire Atlas. Available at: https://www.globalfiredata.org/fireatlas.html
  38. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  39. Kovalov, A. I., Otrosh, Y. A., Vedula, S., Danilin, O. M., Kovalevska, T. M. (2019). Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3. doi: https://doi.org/10.29202/nvngu/2019-3/9
  40. Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J. et al. (2014). Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 23 (5), 606. doi: https://doi.org/10.1071/wf12052
  41. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  42. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/nrs.2019.4(84).11
  43. Roy, S., Swetnam, T., Trochim, E., Schwehr, K., Pasquarella, V. (2023). samapriya/awesome-gee-community-datasets: Community Catalog (1.0.3). Zenodo. 2023. Available at: https://zenodo.org/record/7514665#.ZCxgHnZBzIU
  44. Lang, N., Jetz, W., Schindler, K., Wegner, J. D. (2022). A high-resolution canopy height model of the Earth. arXiv. doi: https://doi.org/10.48550/arXiv.2204.08322
  45. Kustov, M. V., Kalugin, V. D., Hristich, O. V., Hapon, Y. K. (2021). Recovery Method for Emergency Situations with Hazardous Substances Emission into the Atmosphere. International Journal of Safety and Security Engineering, 11 (4), 419–426. doi: https://doi.org/10.18280/ijsse.110415
  46. Melnichenko, A., Kustov, M., Basmanov, O., Tarasenko, O., Bogatov, O., Kravtsov, M. et al. (2022). Devising a procedure to forecast the level of chemical damage to the atmosphere during active deposition of dangerous gases. Eastern-European Journal of Enterprise Technologies, 1 (10 (115)), 31–40. doi: https://doi.org/10.15587/1729-4061.2022.251675
Level of fire danger of the local territory

Downloads

Published

2023-04-29

How to Cite

Kustov, M., Fedoryaka, O., Kononovych, V., Khalmuradov, B., Borodych, P., Kurtseitov, T., Nikitin, A., Romaniuk, V., Meshcheriakov, I., & Veretennikova, J. (2023). Level of fire danger of the local territory. Eastern-European Journal of Enterprise Technologies, 2(10 (122), 31–38. https://doi.org/10.15587/1729-4061.2023.276653