Refinement of three-layer model of a damaged human body for the case of changing the moisture of the banding material

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.277946

Keywords:

non-invasive diagnostics, plaster cast, radiothermal mapping, regression analysis, quality indicators

Abstract

The object of study is a three-layer model of a damaged human body.

In the course of the study, it was found that the generally accepted three-layer model of a damaged human body is built, in particular, on the assumption that the characteristics of dressings remain unchanged over time. Therefore, the vast majority of modern research in the field of passive radiometry requires the removal of such materials from the human body during the measurement or considers their characteristics to be unchanged and insignificant. Questions of a possible change in the results of measuring the radiation of the human body due to the use of plaster casts of varying degrees of humidity remain almost unexplored.

As a result of the study, the mathematical three-layer model of the damaged human body was refined. An element was introduced into the model that describes the dependence of the attenuation of radio wave energy on the relative humidity of the plaster cast. The refined model makes it possible to increase the accuracy of measuring the temperature of the human body, taking into account the time of applying a plaster cast to it. Unlike the existing ones, the proposed model is based on an experimental study that simulates the measurement of the radiation of a human body with a plaster cast of different degrees of humidity. To refine the model, the obtained experimental data were processed by regression analysis methods.

The results of processing the experimental data made it possible to establish the specific type and value of the coefficients of the desired dependence.

The use of the obtained results of the study proves the possibility of remote non-invasive express diagnostics of the state of the human body in the presence of plaster-gauze bandages.

Providing such an opportunity allows disaster medicine workers to increase the ability to fulfill the so-called “golden hour rule”, as well as to clarify the requirements for a medical radiothermal mapping system

Author Biographies

Maksym Ievlanov, Kharkiv National University of Radio Electronics

Doctor of Technical Science, Associate Professor

Department of Information Control Systems

Serhii Chumachenko, National University of Food Technologies

Doctor of Technical Science, Senior Researcher

Department of Information Technologies, Artificial Intelligence and Cyber Security

Oleksandr Fursenko, Institute of Public Administration and Research in Civil Protection

PhD

Department of Innovations, Information Activity in Education and Training on International Projects

Ihor Cherepnov, State Biotechnological University

PhD, Senior Researcher, Associate Professor

Department of Mechatronics, Life Safety and Quality Management

Volodymyr Kyselov, V. I. Vernadsky Taurida National University

Doctor of Technical Science, Professor, Director

Educational and Scientific Institute of Municipal Management and City Economy

Oleksandr Guida, V. I. Vernadsky Taurida National University

PhD

Department of Computer and Information Technologies

Sergii Furtat, V. I. Vernadsky Taurida National University

Senior Lecturer

Department of Automated Management of Technological Processes

References

  1. WHO reveals leading causes of death and disability worldwide: 2000–2019. World Health Organization. Available at: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019
  2. Chang, F.-R., Huang, H.-L., Schwebel, D. C., Chan, A. H. S., Hu, G.-Q. (2020). Global road traffic injury statistics: Challenges, mechanisms and solutions. Chinese Journal of Traumatology, 23 (4), 216–218. doi: https://doi.org/10.1016/j.cjtee.2020.06.001
  3. Vambоl, S. A., Cherepnov, I. A., Dubnitskiy, V. Yu., Vambоl, V. V., Kiriyenko, M. M. (2021). The importance of higher professional education to reduce the risk of occupational injury. Engineering of nature management, 1 (19), 120–132. doi: https://doi.org/10.5281/zenodo.6904067
  4. Ievlanov, M., Serdiuk, N., Feshchenko, A., Duiunova, T., Kiriienko, M., Cherepnov, I. et al. (2020). Improving the mathematical model of change in the body state of an employee. Eastern-European Journal of Enterprise Technologies, 1 (10 (103)), 32–42. doi: https://doi.org/10.15587/1729-4061.2020.195755
  5. Hadetska, S. V., Dubnytskyi, V. Yu., Kushneruk, Yu. I., Khodyriev, O. I., Cherepnov, I. A. (2022). Calculation of probit function tables for non-gaussian distributions and their arguments. Systemy obrobky informatsii, 1 (168), 16–28. doi: https://doi.org/10.30748/soi.2022.168.02
  6. Early cancer diagnosis saves lives, cuts treatment costs (2017). World Health Organization. Available at: https://www.who.int/news/item/03-02-2017-early-cancer-diagnosis-saves-lives-cuts-treatment-costs
  7. Cherepnev, I., Lupikov, V., Liashenko, G. (2011). Osnovnye trebovaniia k diagnosticheskoi apparature na osnove izmereniia sobstvennykh elektromagnitnykh izluchenii biologicheskikh obektov. Sistemi upravlіnnia navіgatcіi ta zv’iazku, 4 (20), 124–131.
  8. Vasko, L. (2018). Innovative method of digital x-ray visualization: low-dose tomosynthesis. Visnyk VDNZU «Ukrainska medychna stomatolohichna akademiia», 18 (1 (61)), 292–296. Available at: http://repository.pdmu.edu.ua/bitstream/123456789/11506/1/Innovative_method_ofdigital_x-ray-visualization.pdf
  9. Radiation: effects and sources (2016). United Nations Environment Programme. Available at: https://www.fs-ev.org/fileadmin/user_upload/89_News/Oeff.-Arbeit/Radiation_Effects_and_sources-2016.pdf
  10. Green, B. B., Taplin, S. H. (2003). Breast Cancer Screening Controversies. The Journal of the American Board of Family Medicine, 16 (3), 233–241. doi: https://doi.org/10.3122/jabfm.16.3.233
  11. Bosmans, H., Marshall, N. (2013). Radiation Doses and Risks Associated with Mammographic Screening. Current Radiology Reports, 1 (1), 30–38. doi: https://doi.org/10.1007/s40134-013-0008-x
  12. Pro zatverdzhennia Derzhavnykh sanitarnykh pravyl i norm «Hihiienichni vymohy do vlashtuvannia ta ekspluatatsii renthenivskykh kabinetiv i provedennia renthenolohichnykh protsedur» (2017). Nakaz Ministerstva okhorony zdorovia Ukrainy No. 294. 04.06.2017. Available at: https://zakon.rada.gov.ua/laws/show/z1256-07#Text
  13. Foster, K. R., Cheever, E. A. (1992). Microwave radiometry in biomedicine: A reappraisal. Bioelectromagnetics, 13 (6), 567–579. doi: https://doi.org/10.1002/bem.2250130611
  14. Ricard, T. A. (2008). Active and Passive Microwave Radiometry for Transcutaneous Measurements of Temperature and Oxygen Saturation. University of South Florida. Available at: https://scholarcommons.usf.edu/etd/474
  15. Afyf, A., Bellarbi, L., Riouch, F., Errachid, A., Sennouni, M.A. (2016). Flexible Antenna Array for Early. Breast Cancer Detection Using Radiometric Technique. International journal of biology and biomedical engineering, 10, 10–17. Available at: http://ijdri.com/ijbbe/2016/a042005-258.pdf
  16. Kuchin, L. F. et al. (2002). Eksperimentalnoe obosnovanie mediko-tekhnicheskikh trebovanii k apparature radioteplovogo kartirovaniia biologicheskikh obektov. Zbіrnik naukovikh pratc KhVU, 1 (39), 126–130.
  17. Sedankin, M., Leushin, V., Gudkov, A., Sidorov, I., Chizhikov, S., Mershin, L., Vesnin, S. (2020). Development and optimization of an ultra wideband miniature medical antenna for radiometric multi-channel multi-frequency thermal monitoring. EUREKA: Physics and Engineering, 6, 71–81. doi: https://doi.org/10.21303/2461-4262.2020.001517
  18. Sun, G., Liu, J., Ma, J., Zhang, K., Sun, Z., Wu, Q. et al. (2021). Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer. Micromachines, 12 (10), 1202. doi: https://doi.org/10.3390/mi12101202
  19. Goryanin, I., Karbainov, S., Shevelev, O., Tarakanov, A., Redpath, K., Vesnin, S., Ivanov, Y. (2020). Passive microwave radiometry in biomedical studies. Drug Discovery Today, 25 (4), 757–763. doi: https://doi.org/10.1016/j.drudis.2020.01.016
  20. Tisdale, K., Bringer, A., Kiourti, A. (2022). Development of a Coherent Model for Radiometric Core Body Temperature Sensing. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (3), 355–363. doi: https://doi.org/10.1109/jerm.2021.3137962
  21. Tisdale, K., Bringer, A., Kiourti, A. (2022). A Core Body Temperature Retrieval Method for Microwave Radiometry When Tissue Permittivity is Unknown. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (4), 470–476. doi: https://doi.org/10.1109/jerm.2022.3171092
  22. Bardati, F., Brown, V. J., Ross, M. P., Tognolatti, P. (1992). Microwave radiometry for medical thermal imaging: theory and experiment. 1992 IEEE Microwave Symposium Digest MTT-S. Albuquerque. doi: https://doi.org/10.1109/mwsym.1992.188237
  23. Harmer, S. W., Shylo, S., Shah, M., Bowring, N. J., Owda, A. Y. (2016). On the feasibility of assessing burn wound healing without removal of dressings using radiometric millimetre-wave sensing. Progress In Electromagnetics Research M, 45, 173–183. doi: https://doi.org/10.2528/pierm15110503
  24. Owda, A. Y., Salmon, N., Shylo, S., Owda, M. (2019). Assessment of Bandaged Burn Wounds Using Porcine Skin and Millimetric Radiometry. Sensors, 19 (13), 2950. doi: https://doi.org/10.3390/s19132950
  25. Luk’ianenko, I., Krasnikova, L. (1998). Ekonometryka. Kyiv: Tovarystvo «Znannia», 493. Available at: http://ekmair.ukma.edu.ua/handle/123456789/9083
  26. Gaidyshev, I. (2015). Modelirovanie stokhasticheskikh i determinirovannykh sistem: Rukovodstvo polzovatelia programmy AtteStat. Kurgan. Available at: http://биостатистика.рф/files/AtteStat_Manual_15.pdf
Refinement of three-layer model of a damaged human body for the case of changing the moisture of the banding material

Downloads

Published

2023-04-29

How to Cite

Ievlanov, M., Chumachenko, S., Fursenko, O., Cherepnov, I., Kyselov, V., Guida, O., & Furtat, S. (2023). Refinement of three-layer model of a damaged human body for the case of changing the moisture of the banding material. Eastern-European Journal of Enterprise Technologies, 2(5 (122), 38–45. https://doi.org/10.15587/1729-4061.2023.277946

Issue

Section

Applied physics