Refinement of three-layer model of a damaged human body for the case of changing the moisture of the banding material
DOI:
https://doi.org/10.15587/1729-4061.2023.277946Keywords:
non-invasive diagnostics, plaster cast, radiothermal mapping, regression analysis, quality indicatorsAbstract
The object of study is a three-layer model of a damaged human body.
In the course of the study, it was found that the generally accepted three-layer model of a damaged human body is built, in particular, on the assumption that the characteristics of dressings remain unchanged over time. Therefore, the vast majority of modern research in the field of passive radiometry requires the removal of such materials from the human body during the measurement or considers their characteristics to be unchanged and insignificant. Questions of a possible change in the results of measuring the radiation of the human body due to the use of plaster casts of varying degrees of humidity remain almost unexplored.
As a result of the study, the mathematical three-layer model of the damaged human body was refined. An element was introduced into the model that describes the dependence of the attenuation of radio wave energy on the relative humidity of the plaster cast. The refined model makes it possible to increase the accuracy of measuring the temperature of the human body, taking into account the time of applying a plaster cast to it. Unlike the existing ones, the proposed model is based on an experimental study that simulates the measurement of the radiation of a human body with a plaster cast of different degrees of humidity. To refine the model, the obtained experimental data were processed by regression analysis methods.
The results of processing the experimental data made it possible to establish the specific type and value of the coefficients of the desired dependence.
The use of the obtained results of the study proves the possibility of remote non-invasive express diagnostics of the state of the human body in the presence of plaster-gauze bandages.
Providing such an opportunity allows disaster medicine workers to increase the ability to fulfill the so-called “golden hour rule”, as well as to clarify the requirements for a medical radiothermal mapping system
References
- WHO reveals leading causes of death and disability worldwide: 2000–2019. World Health Organization. Available at: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019
- Chang, F.-R., Huang, H.-L., Schwebel, D. C., Chan, A. H. S., Hu, G.-Q. (2020). Global road traffic injury statistics: Challenges, mechanisms and solutions. Chinese Journal of Traumatology, 23 (4), 216–218. doi: https://doi.org/10.1016/j.cjtee.2020.06.001
- Vambоl, S. A., Cherepnov, I. A., Dubnitskiy, V. Yu., Vambоl, V. V., Kiriyenko, M. M. (2021). The importance of higher professional education to reduce the risk of occupational injury. Engineering of nature management, 1 (19), 120–132. doi: https://doi.org/10.5281/zenodo.6904067
- Ievlanov, M., Serdiuk, N., Feshchenko, A., Duiunova, T., Kiriienko, M., Cherepnov, I. et al. (2020). Improving the mathematical model of change in the body state of an employee. Eastern-European Journal of Enterprise Technologies, 1 (10 (103)), 32–42. doi: https://doi.org/10.15587/1729-4061.2020.195755
- Hadetska, S. V., Dubnytskyi, V. Yu., Kushneruk, Yu. I., Khodyriev, O. I., Cherepnov, I. A. (2022). Calculation of probit function tables for non-gaussian distributions and their arguments. Systemy obrobky informatsii, 1 (168), 16–28. doi: https://doi.org/10.30748/soi.2022.168.02
- Early cancer diagnosis saves lives, cuts treatment costs (2017). World Health Organization. Available at: https://www.who.int/news/item/03-02-2017-early-cancer-diagnosis-saves-lives-cuts-treatment-costs
- Cherepnev, I., Lupikov, V., Liashenko, G. (2011). Osnovnye trebovaniia k diagnosticheskoi apparature na osnove izmereniia sobstvennykh elektromagnitnykh izluchenii biologicheskikh obektov. Sistemi upravlіnnia navіgatcіi ta zv’iazku, 4 (20), 124–131.
- Vasko, L. (2018). Innovative method of digital x-ray visualization: low-dose tomosynthesis. Visnyk VDNZU «Ukrainska medychna stomatolohichna akademiia», 18 (1 (61)), 292–296. Available at: http://repository.pdmu.edu.ua/bitstream/123456789/11506/1/Innovative_method_ofdigital_x-ray-visualization.pdf
- Radiation: effects and sources (2016). United Nations Environment Programme. Available at: https://www.fs-ev.org/fileadmin/user_upload/89_News/Oeff.-Arbeit/Radiation_Effects_and_sources-2016.pdf
- Green, B. B., Taplin, S. H. (2003). Breast Cancer Screening Controversies. The Journal of the American Board of Family Medicine, 16 (3), 233–241. doi: https://doi.org/10.3122/jabfm.16.3.233
- Bosmans, H., Marshall, N. (2013). Radiation Doses and Risks Associated with Mammographic Screening. Current Radiology Reports, 1 (1), 30–38. doi: https://doi.org/10.1007/s40134-013-0008-x
- Pro zatverdzhennia Derzhavnykh sanitarnykh pravyl i norm «Hihiienichni vymohy do vlashtuvannia ta ekspluatatsii renthenivskykh kabinetiv i provedennia renthenolohichnykh protsedur» (2017). Nakaz Ministerstva okhorony zdorovia Ukrainy No. 294. 04.06.2017. Available at: https://zakon.rada.gov.ua/laws/show/z1256-07#Text
- Foster, K. R., Cheever, E. A. (1992). Microwave radiometry in biomedicine: A reappraisal. Bioelectromagnetics, 13 (6), 567–579. doi: https://doi.org/10.1002/bem.2250130611
- Ricard, T. A. (2008). Active and Passive Microwave Radiometry for Transcutaneous Measurements of Temperature and Oxygen Saturation. University of South Florida. Available at: https://scholarcommons.usf.edu/etd/474
- Afyf, A., Bellarbi, L., Riouch, F., Errachid, A., Sennouni, M.A. (2016). Flexible Antenna Array for Early. Breast Cancer Detection Using Radiometric Technique. International journal of biology and biomedical engineering, 10, 10–17. Available at: http://ijdri.com/ijbbe/2016/a042005-258.pdf
- Kuchin, L. F. et al. (2002). Eksperimentalnoe obosnovanie mediko-tekhnicheskikh trebovanii k apparature radioteplovogo kartirovaniia biologicheskikh obektov. Zbіrnik naukovikh pratc KhVU, 1 (39), 126–130.
- Sedankin, M., Leushin, V., Gudkov, A., Sidorov, I., Chizhikov, S., Mershin, L., Vesnin, S. (2020). Development and optimization of an ultra wideband miniature medical antenna for radiometric multi-channel multi-frequency thermal monitoring. EUREKA: Physics and Engineering, 6, 71–81. doi: https://doi.org/10.21303/2461-4262.2020.001517
- Sun, G., Liu, J., Ma, J., Zhang, K., Sun, Z., Wu, Q. et al. (2021). Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer. Micromachines, 12 (10), 1202. doi: https://doi.org/10.3390/mi12101202
- Goryanin, I., Karbainov, S., Shevelev, O., Tarakanov, A., Redpath, K., Vesnin, S., Ivanov, Y. (2020). Passive microwave radiometry in biomedical studies. Drug Discovery Today, 25 (4), 757–763. doi: https://doi.org/10.1016/j.drudis.2020.01.016
- Tisdale, K., Bringer, A., Kiourti, A. (2022). Development of a Coherent Model for Radiometric Core Body Temperature Sensing. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (3), 355–363. doi: https://doi.org/10.1109/jerm.2021.3137962
- Tisdale, K., Bringer, A., Kiourti, A. (2022). A Core Body Temperature Retrieval Method for Microwave Radiometry When Tissue Permittivity is Unknown. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (4), 470–476. doi: https://doi.org/10.1109/jerm.2022.3171092
- Bardati, F., Brown, V. J., Ross, M. P., Tognolatti, P. (1992). Microwave radiometry for medical thermal imaging: theory and experiment. 1992 IEEE Microwave Symposium Digest MTT-S. Albuquerque. doi: https://doi.org/10.1109/mwsym.1992.188237
- Harmer, S. W., Shylo, S., Shah, M., Bowring, N. J., Owda, A. Y. (2016). On the feasibility of assessing burn wound healing without removal of dressings using radiometric millimetre-wave sensing. Progress In Electromagnetics Research M, 45, 173–183. doi: https://doi.org/10.2528/pierm15110503
- Owda, A. Y., Salmon, N., Shylo, S., Owda, M. (2019). Assessment of Bandaged Burn Wounds Using Porcine Skin and Millimetric Radiometry. Sensors, 19 (13), 2950. doi: https://doi.org/10.3390/s19132950
- Luk’ianenko, I., Krasnikova, L. (1998). Ekonometryka. Kyiv: Tovarystvo «Znannia», 493. Available at: http://ekmair.ukma.edu.ua/handle/123456789/9083
- Gaidyshev, I. (2015). Modelirovanie stokhasticheskikh i determinirovannykh sistem: Rukovodstvo polzovatelia programmy AtteStat. Kurgan. Available at: http://биостатистика.рф/files/AtteStat_Manual_15.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maksym Ievlanov, Serhii Chumachenko, Oleksandr Fursenko, Ihor Cherepnov, Volodymyr Kyselov, Oleksandr Guida, Sergii Furtat
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.