Improving the technology of the synthesis of fatty acid monoglycerides using the glycerolysis reaction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.278270

Keywords:

fatty acid monoglycerides, chemical transesterification catalyst, emulsion stability, potassium glyceroxide

Abstract

The object of research is the process of fat glycerolysis in order to obtain fatty acid monoglycerides.

Monoglycerides are an important component of chemical, pharmaceutical, cosmetic, and food industry products. These substances are used as emulsifiers, structure formers, complex formers, etc. The industrial production of monoglycerides involves the use of complex technologies, as well as dangerous and unstable catalysts. An urgent task is to develop new catalysts and improve technologies for monoglycerides obtaining.

The technology for the synthesis of monoglycerides by the glycerolysis method, which involves the reaction of vegetable hydrogenated fat with glycerol, was studied. Potassium glyceroxide was used as a catalyst, which is effective and safe in terms of production and use.

Hydrogenated unrefined fat according to DSTU 5040 (CAS Number 68334-28-1) was used. The fat has non-standard parameters: the melting point is 51 °C, the mass fraction of moisture and volatile substances is 0.3 %, the acid value is 3.2 mg KOH/g, the peroxide value is 7.6 ½ O mmol/kg.

The process duration was 90 minutes, the glycerol concentration was 50 %. Rational conditions for glycerolysis were determined: catalyst concentration (1.5 %) and temperature (140 °C). Under these conditions, the product ensured the stability of the “water – sunflower oil” emulsion of 96.8 %, the concentration of monoglycerides in the system was 0.1 %. Product parameters: mass fraction of monoglycerides – 72.5 %, free glycerol – 1.5 %, acid value – 1.7 mg KOH/g.

The research results make it possible to improve the glycerolysis process using a new catalyst and obtain monoglycerides with high emulsifying ability. This will increase the profitability of the enterprise and increase the volume of production of high-quality monoglycerides for various industries

Author Biographies

Dmytro Saveliev, National University of Civil Defence of Ukraine

PhD

Department of Engineering and Rescue Machinery

Olena Petrova, Mykolayiv National Agrarian University

PhD, Associate Professor

Department of Livestock Products Processing and Food Technologies

Oleksandr Yashchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization in the Field of Civil Protection

Serhii Rudakov, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire Prevention in Settlements

Serhii Harbuz, National University of Civil Defence of Ukraine

PhD

Department of Prevention Activities and Monitoring

Natalia Shevchuk, Mykolayiv National Agrarian University

PhD, Senior Lecturer

Department of Livestock Products Processing and Food Technologies

Tetiana Kachanova, Mykolayiv National Agrarian University

PhD, Associate Professor

Department of Agriculture, Geodesy and Land Management

Michael Gill, Mykolayiv National Agrarian University

Doctor of Agricultural Sciences, Professor

Department of Biotechnology and Bioengineering

Nataliia Bolhova, Sumy National Agrarian University

PhD, Associate Professor

Department of Technology and Food Safety

Nataliia Borozenets, Sumy National Agrarian University

PhD, Associate Professor

Department of Higher Mathematics

References

  1. Nguyen, D. M., Nguyen, T. M. L., Colin, J., Perré, P., Nguyen, T. D., Thuc, H. H., Thuc, C. N. H. (2019). Monoglyceride as an effective and friendly modification agent for nano-layered structure of Montmorillonite. Applied Clay Science, 179, 105100. doi: https://doi.org/10.1016/j.clay.2019.04.008
  2. Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: https://doi.org/10.15587/1729-4061.2017.118565
  3. Kwon, C. W., Chang, P.-S. (2021). Influence of alkyl chain length on the action of acetylated monoglycerides as plasticizers for poly (vinyl chloride) food packaging film. Food Packaging and Shelf Life, 27, 100619. doi: https://doi.org/10.1016/j.fpsl.2020.100619
  4. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Lopatina, H., Tsybuliak, N. (2017). Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide. Eastern-European Journal of Enterprise Technologies, 6 (5 (90)), 22–31. doi: https://doi.org/10.15587/1729-4061.2017.118725
  5. Chen, C., Zhang, C., Zhang, Q., Ju, X., Wang, Z., He, R. (2021). Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation. Food Chemistry, 354, 129534. doi: https://doi.org/10.1016/j.foodchem.2021.129534
  6. Levterov, A. M. (2018). Thermodynamic properties of fatty acid esters in some biodiesel fuels. Functional Materials, 25 (2), 308–312. doi: https://doi.org/10.15407/fm25.02.308
  7. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
  8. Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., Kasaby, M. A. (2021). Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 284, 118970. doi: https://doi.org/10.1016/j.fuel.2020.118970
  9. Petik, I., Belinska, A., Kunitsia, E., Bochkarev, S., Ovsiannikova, T., Kalyna, V. et al. (2021). Processing of ethanol-containing waste of oil neutralization in the technology of hand cleaning paste. Eastern-European Journal of Enterprise Technologies, 1 (10 (109)), 23–29. doi: https://doi.org/10.15587/1729-4061.2021.225233
  10. Mustafa, A., Niikura, F., Pastore, C., Allam, H. A., Hassan, O. B., Mustafa, M. et al. (2022). Selective synthesis of alpha monoglycerides by a clean method: Techno-economic and environmental assessment. Sustainable Chemistry and Pharmacy, 27, 100690. doi: https://doi.org/10.1016/j.scp.2022.100690
  11. Sytnik, N., Kunitsia, E., Mazaeva, V., Chernukha, A., Ostapov, K., Borodych, P. et al. (2021). Establishing rational conditions for obtaining potassium glycerate. Eastern-European Journal of Enterprise Technologies, 3 (6 (111)), 12–18. doi: https://doi.org/10.15587/1729-4061.2021.231449
  12. Teslenko, A., Chernukha, A., Bezuglov, O., Bogatov, O., Kunitsa, E., Kalyna, V. et al. (2019). Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 42–49. doi: https://doi.org/10.15587/1729-4061.2019.181668
  13. Chernukha, A., Chernukha, A., Ostapov, K., Kurska, T. (2021). Investigation of the Processes of Formation of a Fire Retardant Coating. Materials Science Forum, 1038, 480–485. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.480
  14. Chernukha, A., Chernukha, A., Kovalov, P Savchenko, A. (2021). Thermodynamic Study of Fire-Protective Material. Materials Science Forum, 1038, 486–491. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.486
  15. Li, J., Guo, R., Bi, Y., Zhang, H., Xu, X. (2021). Comprehensive evaluation of saturated monoglycerides for the forming of oleogels. LWT, 151, 112061. doi: https://doi.org/10.1016/j.lwt.2021.112061
  16. Sytnik, N., Kunitsa, E., Mazaeva, V., Chernukha, A., Bezuglov, O., Bogatov, O. et al. (2020). Determination of the influence of natural antioxidant concentrations on the shelf life of sunflower oil. Eastern-European Journal of Enterprise Technologies, 4 (11 (106)), 55–62. doi: https://doi.org/10.15587/1729-4061.2020.209000
  17. Kovaliova, O., Pivovarov, O., Kalyna, V., Tchoursinov, Y., Kunitsia, E., Chernukha, A. et al. (2020). Implementation of the plasmochemical activation of technological solutions in the process of ecologization of malt production. Eastern-European Journal of Enterprise Technologies, 5 (10 (107)), 26–35. doi: https://doi.org/10.15587/1729-4061.2020.215160
  18. Dushkin, S. S., Galkina, O. P. (2019). More Effective Clarification of Circulating Water at Coke Plants. Coke and Chemistry, 62 (10), 474–480. doi: https://doi.org/10.3103/s1068364x19100041
  19. Sytnik, N., Kunitsia, E., Mazaeva, V., Chernukha, A., Kovalov, P., Grigorenko, N. et al. (2020). Rational parameters of waxes obtaining from oil winterization waste. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 29–35. doi: https://doi.org/10.15587/1729-4061.2020.219602
  20. Rybalova, O., Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 67–76. doi: https://doi.org/10.15587/1729-4061.2017.112211
  21. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
  22. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  23. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  24. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  25. Loboichenko, V., Strelec, V. (2018). The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation. Water and Energy International, 61r (9), 43–50. Available at: https://www.indianjournals.com/ijor.aspx?target=ijor:wei&volume=61r&issue=9&article=008
  26. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 4–17. doi: https://doi.org/10.15587/1729-4061.2018.127829
  27. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: https://doi.org/10.15587/1729-4061.2017.85847
  28. Naik, M. K., Naik, S. N., Mohanty, S. (2014). Enzymatic glycerolysis for conversion of sunflower oil to food based emulsifiers. Catalysis Today, 237, 145–149. doi: https://doi.org/10.1016/j.cattod.2013.11.005
  29. Elgharbawy, A. S., Sadik, Wagih. A., Sadek, O. M., Kasaby, M. A. (2021). Maximizing biodiesel production from high free fatty acids feedstocks through glycerolysis treatment. Biomass and Bioenergy, 146, 105997. doi: https://doi.org/10.1016/j.biombioe.2021.105997
  30. Belelli, P. G., Ferretti, C. A., Apesteguía, C. R., Ferullo, R. M., Di Cosimo, J. I. (2015). Glycerolysis of methyl oleate on MgO: Experimental and theoretical study of the reaction selectivity. Journal of Catalysis, 323, 132–144. doi: https://doi.org/10.1016/j.jcat.2015.01.001
  31. Gole, V. L., Gogate, P. R. (2014). Intensification of glycerolysis reaction of higher free fatty acid containing sustainable feedstock using microwave irradiation. Fuel Processing Technology, 118, 110–116. doi: https://doi.org/10.1016/j.fuproc.2013.08.018
  32. Sytnik, N., Kunitsia, E., Mazaeva, V., Kalyna, V., Chernukha, A., Vazhynskyi, S. et al. (2021). Rational conditions of fatty acids obtaining by soapstock treatment with sulfuric acid. Eastern-European Journal of Enterprise Technologies, 4 (6 (112)), 6–13. doi: https://doi.org/10.15587/1729-4061.2021.236984
  33. Balsamo, N. F., Sapag, K., Oliva, M. I., Pecchi, G. A., Eimer, G. A., Crivello, M. E. (2017). Mixed oxides tuned with alkaline metals to improve glycerolysis for sustainable biodiesel production. Catalysis Today, 279, 209–216. doi: https://doi.org/10.1016/j.cattod.2016.06.005
  34. Echeverri, D. A., Perez, W. A., Rios, L. A. (2013). Synthesis of maleated-castor oil glycerides from biodiesel-derived crude glycerol. Industrial Crops and Products, 49, 299–303. doi: https://doi.org/10.1016/j.indcrop.2013.05.008
  35. Bliznjuk, O., Masalitina, N., Mezentseva, I., Novozhylova, T., Korchak, M., Haliasnyi, I. et al. (2022). Development of safe technology of obtaining fatty acid monoglycerides using a new catalyst. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 13–18. doi: https://doi.org/10.15587/1729-4061.2022.253655
Improving the technology of the synthesis of fatty acid monoglycerides using the glycerolysis reaction

Downloads

Published

2023-06-30

How to Cite

Saveliev, D., Petrova, O., Yashchenko, O., Rudakov, S., Harbuz, S., Shevchuk, N., Kachanova, T., Gill, M., Bolhova, N., & Borozenets, N. (2023). Improving the technology of the synthesis of fatty acid monoglycerides using the glycerolysis reaction. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 6–12. https://doi.org/10.15587/1729-4061.2023.278270

Issue

Section

Technology organic and inorganic substances