Analysis of the thermal shock and fouling resistance of the Kalimantan zircon based hybrid composite ceramic coating in boiler environment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.281807

Keywords:

zircon sand ceramic coating, purified zircon ceramic coating, lubricant, slurry spray, thermal shock, fouling resistance

Abstract

Power plant boilers operate at relatively high temperatures and pressures. As they are prone to material degradation, fouling and scaling, the materials used must have good thermal and chemical resistance. Coating material is one of the solutions to problems that exist in boilers. In this study, the basic coating material used came from local mineral resources, namely Kalimantan zircon sand and zirconia that had been purified from zircon sand. And there is the addition of filler as a coating reinforcement so that the coating properties become better. The variables of this study are variations of filler materials that have lubricating properties such as hBN, MoS2, graphite and a mixture of the three fillers (hybrid). The coating method used is slurry spray coating and then sintering at 600 °C. The main coating parameter tests carried out were thermal shock and anti-fouling resistance. From the research results, it was found that the purification of Zircon Sand resulted in an increase in Zirconia content from 59 % to 68 %. From the results of the thermal shock resistance and anti-fouling tests, it was found that the coating with purified zircon has better thermal shock resistance while the fouling resistance is not significantly different from unrefined zircon sand, so it is necessary to develop a zircon purification process to obtain a higher ZrO2 content. For filler variations, the hybrid filler produces a coating with better thermal shock and anti-fouling resistance so that it can be used for optimizing ceramic composite coatings

Supporting Agency

  • The Authors would like to thank to PDD Funding of Kemenristekdikti who have funded this research.

Author Biographies

Yulinda Lestari, National Research and Innovation Agency (BRIN)

Master of Engineering

Research Center for Metallurgy

Anne Zulfia, University of Indonesia

Doctor of Engineering, Professor

Department of Metallurgy and Materials Engineering

Muhammad Ardin, Sumbawa Engineering University

Bachelor of Engineering

Department of Metallurgy Engineering

Septian Adi Chandra, National Research and Innovation Agency (BRIN)

Bachelor of Engineering

Research Center for Metallurgy

Fauzi Widyawati, Sumbawa Engineering University

Bachelor of Science

Department of Metallurgy Engineering

Efendi Mabruri, National Research and Innovation Agency (BRIN)

Doctor of Engineering, Professor

Research Center for Metallurgy

References

  1. Ahmed, G. M. S., Mohiuddin, Mohd. V., Sultana, S., Dora, H. K., Singh, V. D. (2015). Microstructure Analysis and Evaluation of Mechanical Properties of Nickel Based Super Alloy CCA617. Materials Today: Proceedings, 2 (4-5), 1260–1269. doi: https://doi.org/10.1016/j.matpr.2015.07.041
  2. Mabruri, E., Syahlan, Z. A., Sahlan, Prifiharni, S., Anwar, M. S., Chandra, S. A. et al. (2017). Influence of Austenitizing Heat Treatment on the Properties of the Tempered Type 410-1Mo Stainless Steel. IOP Conference Series: Materials Science and Engineering, 202, 012085. doi: https://doi.org/10.1088/1757-899x/202/1/012085
  3. Müller-Steinhagen, H., Malayeri, M. R., Watkinson, A. P. (2011). Heat Exchanger Fouling: Mitigation and Cleaning Strategies. Heat Transfer Engineering, 32 (3-4), 189–196. doi: https://doi.org/10.1080/01457632.2010.503108
  4. Gomes da Cruz, L., Ishiyama, E. M., Boxler, C., Augustin, W., Scholl, S., Wilson, D. I. (2015). Value pricing of surface coatings for mitigating heat exchanger fouling. Food and Bioproducts Processing, 93, 343–363. doi: https://doi.org/10.1016/j.fbp.2014.05.003
  5. Santos, O., Anehamre, J., Wictor, C., Tornqvist, A., Nilsson, M. (2013). Minimizing crude oil fouling by modifying the surface of heat exchangers with a flexible ceramic coating. In Proc. Heat Exchanger Fouling & Cleaning X, 79–84.
  6. Wang, J., Yuan, Y., Chi, Z., Zhang, G. (2018). Development and application of anti-fouling ceramic coating for high-sodium coal-fired boilers. Journal of the Energy Institute, 91 (6), 962–969. doi: https://doi.org/10.1016/j.joei.2017.08.003
  7. Zhang, Z., Chen, H., Wang, Y., Wang, G., Li, L., Zhong, M., Bai, H. (2022). Effect of sodium silicate binder on the performance of ceramic coatings on copper prepared by the slurry method. Surface and Coatings Technology, 448, 128868. doi: https://doi.org/10.1016/j.surfcoat.2022.128868
  8. Hirvonen, A., Nowak, R., Yamamoto, Y., Sekino, T., Niihara, K. (2006). Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. Journal of the European Ceramic Society, 26 (8), 1497–1505. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.232
  9. Fazel, M., Jazi, M. R. G., Bahramzadeh, S., Bakhshi, S. R., Ramazani, M. (2014). Effect of solid lubricant particles on room and elevated temperature tribological properties of Ni–SiC composite coating. Surface and Coatings Technology, 254, 252–259. doi: https://doi.org/10.1016/j.surfcoat.2014.06.027
  10. Kumar, R., Antonov, M. (2021). Self-lubricating materials for extreme temperature tribo-applications. Materials Today: Proceedings, 44, 4583–4589. doi: https://doi.org/10.1016/j.matpr.2020.10.824
  11. Sun, X., Zhang, J., Pan, W., Wang, W., Tang, C. (2023). A review on the preparation and application of BN composite coatings. Ceramics International, 49 (1), 24–39. doi: https://doi.org/10.1016/j.ceramint.2022.10.259
  12. Mischke, P. (2014). Film Formation: in Modern Paint Systems. Hannover, Germany: Vincentz Network. doi: https://doi.org/10.1515/9783748602262
  13. Wu, Z., Li, S., Zhang, P., Wang, C., Deng, C., Mao, J., Li, W., Tu, X. (2022). Controllable in-situ synthesis of MoS2/C in plasma-sprayed YSZ coatings: Microstructure, mechanical and tribological properties. Surface and Coatings Technology, 448, 128895. doi: https://doi.org/10.1016/j.surfcoat.2022.128895
  14. Tuo, Y., Yang, Z., Guo, Z., Chen, Y., Hao, J., Zhao, Q. et al. (2023). Pore structure optimization of MoS2/Al2O3 self-lubricating ceramic coating for improving corrosion resistance. Vacuum, 207, 111687. doi: https://doi.org/10.1016/j.vacuum.2022.111687
  15. Marcinauskas, L., Mathew, J. S., Milieška, M., Aikas, M., Kalin, M. (2023). Influence of graphite content on the tribological properties of plasma sprayed alumina-graphite coatings. Surfaces and Interfaces, 38, 102763. doi: https://doi.org/10.1016/j.surfin.2023.102763
  16. Eichler, J., Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28 (5), 1105–1109. doi: https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  17. Zhao, W., Pan, J., Fang, Y., Che, X., Wang, D., Bu, K., Huang, F. (2018). Metastable MoS2 : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry - A European Journal, 24 (60), 15942–15954. doi: https://doi.org/10.1002/chem.201801018
  18. Jara, A. D., Betemariam, A., Woldetinsae, G., Kim, J. Y. (2019). Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29 (5), 671–689. doi: https://doi.org/10.1016/j.ijmst.2019.04.003
  19. Lee, K. N., Waters, D. L., Puleo, B. J., Garg, A., Jennings, W. D., Costa, G., Sacksteder, D. E. (2020). Development of oxide-based High temperature environmental barrier coatings for ceramic matrix composites via the slurry process. Journal of the European Ceramic Society, 41 (2), 1639–1653. doi: https://doi.org/10.1016/j.jeurceramsoc.2020.10.012
  20. Wang, J., Yuan, Y., Chi, Z., Zhang, G. (2018). High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method. Materials Chemistry and Physics, 206, 186–192. doi: https://doi.org/10.1016/j.matchemphys.2017.12.025
  21. Jiapei, J., Yongnan, C., Chaoping, J., Yong, Z., Qinyang, Z., Zhen, Z. et al. (2022). Composite ceramic coating with enhanced thermal shock resistance formed by the in-situ synthesis of nano-ZrO2. Ceramics International, 48 (8), 10629–10637. doi: https://doi.org/10.1016/j.ceramint.2021.12.277
  22. Liu, Q., Hu, X. P., Zhu, W., Liu, G. L., Guo, J. W., Bin, J. (2022). Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying. Ceramics International, 48 (17), 24402–24410. doi: https://doi.org/10.1016/j.ceramint.2022.05.046
  23. Sigaroodi, M. R. J., Poursaeidi, E., Rahimi, J., Jamalabad, Y. Y. (2023). Heat treatment effect on coating shock resistance of thermal barrier coating system with different types of bond coat. Journal of the European Ceramic Society, 43 (8), 3658–3675. doi: https://doi.org/10.1016/j.jeurceramsoc.2023.01.035
  24. Cañas, E., Rosado, E., Alcázar, C., Orts, M. J., Moreno, R., Sánchez, E. (2022). Challenging zircon coatings by suspension plasma spraying. Journal of the European Ceramic Society, 42 (10), 4369–4376. doi: https://doi.org/10.1016/j.jeurceramsoc.2022.03.049
  25. Barish, J. A., Goddard, J. M. (2013). Anti-fouling surface modified stainless steel for food processing. Food and Bioproducts Processing, 91 (4), 352–361. doi: https://doi.org/10.1016/j.fbp.2013.01.003
  26. Ishiyama, E. M., Paterson, W. R., Wilson, D. I. (2008). Thermo-hydraulic channelling in parallel heat exchangers subject to fouling. Chemical Engineering Science, 63 (13), 3400–3410. doi: https://doi.org/10.1016/j.ces.2008.04.008
  27. Ayala, L. (2015). Technical handbook on zirconium and zirconium compounds. Zircon Industry Association.
  28. Musyarofah, Lestari, N. D., Nurlaila, R., Muwwaqor, N. F., Triwikantoro, Pratapa, S. (2019). Synthesis of high-purity zircon, zirconia, and silica nanopowders from local zircon sand. Ceramics International, 45 (6), 6639–6647. doi: https://doi.org/10.1016/j.ceramint.2018.12.152
  29. Yuhelda, Y., Amalia, D., Nugraha, E. P. (2017). Processing zirconia through zircon sand smelting with NaOH as a flux. Indonesian Mining Journal, 19 (1), 39–49. doi: https://doi.org/10.30556/imj.vol19.no1.2016.364
  30. Yamagata, C., Andrade, J. B., Ussui, V., de Lima, N. B., Paschoal, J. O. A. (2008). High Purity Zirconia and Silica Powders via Wet Process: Alkali Fusion of Zircon Sand. Materials Science Forum, 591-593, 771–776. doi: https://doi.org/10.4028/www.scientific.net/msf.591-593.771
  31. Ray, H. S., Ghosh, A. (2010). Principles of Extractive Metallurgy. New Delhi: New Age International (P) Limites Publisher.
  32. Mutimmah, Yuswono, S., Akbar, D. W., Nugroho, T. P., Rahman, Nofrizal, R., Ikono, Siswanto, Rochman, N. T. (2013). Optimization of Zirconia Extraction Made from Silicate Zircon Sand Through Base Reduction. Proceedings of Semirata FMIPA, University of Lampung, 401–404.
  33. Sarkar, M., Mandal, N. (2022). Solid lubricant materials for high temperature application: A review. Materials Today: Proceedings, 66, 3762–3768. doi: https://doi.org/10.1016/j.matpr.2022.06.030
  34. Bittmann, B., Haupert, F., Schlarb, A. K. (2009). Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrasonics Sonochemistry, 16 (5), 622–628. doi: https://doi.org/10.1016/j.ultsonch.2009.01.006
  35. Billotte, C., Fotsing, E. R., Ruiz, E. (2017). Optimization of Alumina Slurry for Oxide-Oxide Ceramic Composites Manufactured by Injection Molding. Advances in Materials Science and Engineering, 2017, 1–9. doi: https://doi.org/10.1155/2017/2748070
  36. Tajima, R., Kato, Y. (2011). Comparison of threshold algorithms for automatic image processing of rice roots using freeware ImageJ. Field Crops Research, 121 (3), 460–463. doi: https://doi.org/10.1016/j.fcr.2011.01.015
  37. Nguyen, M., Bang, J., Kim, Y., Bin, A., Hwang, K., Pham, V.-H., Kwon, W.-T. (2018). Anti-Fouling Ceramic Coating for Improving the Energy Efficiency of Steel Boiler Systems. Coatings, 8 (10), 353. https://doi.org/10.3390/coatings8100353
  38. Poernomo, H. (2012). Zirconium General Information. Yogyakarta: National Nuclear Energy Agency, Center for Material Process and Accelerator Technology.
  39. Donachie, M. (2000). Titanium: A Technical Guide. ASM International. doi: https://doi.org/10.31399/asm.tb.ttg2.9781627082693
  40. Xiao, K., Xue, W., Li, Z., Wang, J., Li, X., Dong, C. et al. (2018). Effect of sintering temperature on the microstructure and performance of a ceramic coating obtained by the slurry method. Ceramics International, 44 (10), 11180–11186. doi: https://doi.org/10.1016/j.ceramint.2018.03.147
  41. Lee, S.-H., Themelis, N. J., Castaldi, M. J. (2007). High-Temperature Corrosion in Waste-to-Energy Boilers. Journal of Thermal Spray Technology, 16 (1), 104–110. doi: https://doi.org/10.1007/s11666-006-9005-4
  42. Cheng, Y., Miu, L., Hou, B. (1990). Fatigue Strength[M]. Beijing: China Railway Press, 11.
Analysis of the thermal shock and fouling resistance of the Kalimantan zircon based hybrid composite ceramic coating in boiler environment

Downloads

Published

2023-08-31

How to Cite

Lestari, Y., Zulfia, A., Ardin, M., Chandra, S. A., Widyawati, F., & Mabruri, E. (2023). Analysis of the thermal shock and fouling resistance of the Kalimantan zircon based hybrid composite ceramic coating in boiler environment. Eastern-European Journal of Enterprise Technologies, 4(12 (124), 6–17. https://doi.org/10.15587/1729-4061.2023.281807

Issue

Section

Materials Science