Improving the technique of protecting concrete floors in poultry houses

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.282127

Keywords:

floor, microorganisms, litter, destruction, concrete

Abstract

The object of the study was concrete floors in a poultry house with different types of litter. The paper addressed the problem of reducing microorganism contamination of concrete floors in poultry houses to prevent biological corrosion.

Corrosion of the surface of the concrete floor in the form of the formation of calcium oxalate monohydrate crystals was established by scanning electron microscopy; microscopic fungi: A. pullulans, F. sporotrichioides, and A. niger were detected. The TPD MS method established that concrete samples obtained in a room with straw lose moisture by 51.52 % more, with granules – by 342.42 % (р≤0.05), with shavings by 6.06 %, compared to control. CO from concrete samples is released less with sawdust litter by 86.40 %, with straw – by 83.49 %, with shavings – by 76.69 %, with granules – by 69.90 % (р≤0.05). The CO2 content in concrete samples from the room with sawdust was lower by 86.88 % (р≤0.05), with straw – by 55.73 %, with shavings – by 38.52 %, with granules – by 23.77 %, compared to control without litter.

Microbiological studies have established that 48 hours after disinfection, the total number of colonies of microorganisms on a concrete floor with a sawdust litter likely decreased by an average of 90.19 %, straw – by 91.62 %, shavings – by 79.76 %, granules – by 82.88 % (р≤0.05), in the control – by 83.73 %. It can be argued that the disinfectant destroys microorganisms on the concrete surface regardless of the type of substrate.

The peculiarity of the experiment was the use of scanning electron microscopy and TPD MS methods to study structural changes in concrete. The research is distinguished by the use of a powdered disinfectant to reduce microbial damage to a concrete floor with different types of litter.

The results of the experiment could be used in the aggressive environment of poultry houses to reduce the impact on concrete structures

Author Biographies

Tatiana Fotina, Sumy National Agrarian University

Doctor of Veterinary Sciences, Professor

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

Volodymyr Petrov, Sumy National Agrarian University

Postgraduate Student

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

Hryhorii Havryliuk, Sumy National Agrarian University

Postgraduate Student

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

Yurii Liashenko, Sumy National Agrarian University

Postgraduate Student

Department of Fodder Technology and Animal Feeding

Liudmyla Varenyk, Sumy National Agrarian University

Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products

References

  1. Maraveas, C. (2020). Durability Issues and Corrosion of Structural Materials and Systems in Farm Environment. Applied Sciences, 10 (3), 990. doi: https://doi.org/10.3390/app10030990
  2. Barbhuiya, S., Kumala, D. (2017). Behaviour of a Sustainable Concrete in Acidic Environment. Sustainability, 9 (9), 1556. doi: https://doi.org/10.3390/su9091556
  3. Huber, B., Hilbig, H., Drewes, J. E., Müller, E. (2017). Evaluation of concrete corrosion after short- and long-term exposure to chemically and microbially generated sulfuric acid. Cement and Concrete Research, 94, 36–48. doi: https://doi.org/10.1016/j.cemconres.2017.01.005
  4. Jacob, J. de S., Mascelani, A. G., Steinmetz, R. L. R., Costa, F. A. D., Dalla Costa, O. A. (2018). Use of silica fume and nano-silica in mortars attacked by acids present in pig manure. Procedia Structural Integrity, 11, 44–51. doi: https://doi.org/10.1016/j.prostr.2018.11.007
  5. Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134, 341–352. doi: https://doi.org/10.1016/j.watres.2018.01.043
  6. Shkromada, O., Fotina, T., Dudnyk, Y., Petrov, R., Levytska, V., Chivanov, V. et al. (2022). Reducing the biogenic corrosion of concrete in a pigsty by using disinfectants. Eastern-European Journal of Enterprise Technologies, 4 (6 (118)), 57–66. doi: https://doi.org/10.15587/1729-4061.2022.263310
  7. Ahamed, M. S., Guo, H., Taylor, L., Tanino, K. (2019). Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information Processing in Agriculture, 6 (1), 81–90. doi: https://doi.org/10.1016/j.inpa.2018.08.005
  8. Pilotto, F., Rodrigues, L., Santos, L., Klein, W., Colussi, F., Nascimento, V. (2007). Antibacterial efficacy of commercial disinfectants on dirt floor used in poultry breeder houses. Revista Brasileira de Ciência Avícola, 9 (2), 127–131. doi: https://doi.org/10.1590/s1516-635x2007000200009
  9. Brągoszewska, E., Mainka, A., Pastuszka, J., Lizończyk, K., Desta, Y. (2018). Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere, 9 (3), 87. doi: https://doi.org/10.3390/atmos9030087
  10. Wang, Y., Zhang, R., Duan, J., Shi, X., Zhang, Y., Guan, F. et al. (2022). Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. International Journal of Molecular Sciences, 23 (10), 5566. doi: https://doi.org/10.3390/ijms23105566
  11. Huber, B., Herzog, B., Drewes, J. E., Koch, K., Müller, E. (2016). Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiology, 16 (1). doi: https://doi.org/10.1186/s12866-016-0767-7
  12. Wei, J., Wang, Z., Sun, W., Yang, R. (2023). Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment. Materials, 16 (1), 452. doi: https://doi.org/10.3390/ma16010452
  13. Qiu, L., Dong, S., Ashour, A., Han, B. (2020). Antimicrobial concrete for smart and durable infrastructures: A review. Construction and Building Materials, 260, 120456. doi: https://doi.org/10.1016/j.conbuildmat.2020.120456
  14. Hilal, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications. doi: https://doi.org/10.5772/64574
  15. Murphy, C. J., Ardy Nugroho, F. A., Härelind, H., Hellberg, L., Langhammer, C. (2020). Plasmonic Temperature-Programmed Desorption. Nano Letters, 21 (1), 353–359. doi: https://doi.org/10.1021/acs.nanolett.0c03733
  16. Bozhokin, M. S., Bozhkova, S. A., Rubel, A. A., Sopova, J. V., Nashchekina, Y. A., Bildyug, N. B., Khotin, M. G. (2021). Specificities of Scanning Electron Microscopy and Histological Methods in Assessing Cell-Engineered Construct Effectiveness for the Recovery of Hyaline Cartilage. Methods and Protocols, 4 (4), 77. doi: https://doi.org/10.3390/mps4040077
  17. Hanišáková, N., Vítězová, M., Rittmann, S. K.-M. R. (2022). The Historical Development of Cultivation Techniques for Methanogens and Other Strict Anaerobes and Their Application in Modern Microbiology. Microorganisms, 10 (2), 412. doi: https://doi.org/10.3390/microorganisms10020412
  18. Suwannarach, N., Kumla, J., Zhao, Y., Kakumyan, P. (2022). Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. Biology, 11 (4), 569. doi: https://doi.org/10.3390/biology11040569
  19. Shkromada, O., Paliy, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O. et al. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.179177
  20. Yakovleva, G., Sagadeev, E., Stroganov, V., Kozlova, O., Okunev, R., Ilinskaya, O. (2018). Metabolic Activity of Micromycetes Affecting Urban Concrete Constructions. The Scientific World Journal, 2018, 1–9. doi: https://doi.org/10.1155/2018/8360287
  21. van de Veerdonk, F. L., Gresnigt, M. S., Romani, L., Netea, M. G., Latgé, J.-P. (2017). Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 15 (11), 661–674. doi: https://doi.org/10.1038/nrmicro.2017.90
  22. Ortega-Morales, B. O., Narváez-Zapata, J., Reyes-Estebanez, M., Quintana, P., De la Rosa-García, S. del C., Bullen, H. et al. (2016). Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings. Frontiers in Microbiology, 7. doi: https://doi.org/10.3389/fmicb.2016.00201
  23. Van Wylick, A., Monclaro, A. V., Elsacker, E., Vandelook, S., Rahier, H., De Laet, L. et al. (2021). A review on the potential of filamentous fungi for microbial self-healing of concrete. Fungal Biology and Biotechnology, 8 (1). doi: https://doi.org/10.1186/s40694-021-00122-7
  24. Thomas, K. M., de Glanville, W. A., Barker, G. C., Benschop, J., Buza, J. J., Cleaveland, S. et al. (2020). Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. International Journal of Food Microbiology, 315, 108382. doi: https://doi.org/10.1016/j.ijfoodmicro.2019.108382
  25. Shkromada, O., Fotina, T., Petrov, R., Nagorna, L., Bordun, O., Barun, M. et al. (2021). Development of a method of protection of concrete floors of animal buildings from corrosion at the expense of using dry disinfectants. Eastern-European Journal of Enterprise Technologies, 4 (6 (112)), 33–40. doi: https://doi.org/10.15587/1729-4061.2021.236977
  26. Newell, D. G., Elvers, K. T., Dopfer, D., Hansson, I., Jones, P., James, S. et al. (2011). Biosecurity-Based Interventions and Strategies To Reduce Campylobacter spp. on Poultry Farms. Applied and Environmental Microbiology, 77 (24), 8605–8614. doi: https://doi.org/10.1128/aem.01090-10
Improving the technique of protecting concrete floors in poultry houses

Downloads

Published

2023-06-30

How to Cite

Fotina, T., Petrov, V., Havryliuk, H., Liashenko, Y., & Varenyk, L. (2023). Improving the technique of protecting concrete floors in poultry houses. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 66–76. https://doi.org/10.15587/1729-4061.2023.282127

Issue

Section

Technology organic and inorganic substances