Prototyping an integrated IoT-based real-time sewer monitoring system using low-power sensors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.283393

Keywords:

sewer monitoring, sensors, Internet of Things, Geographic Information System, sewer chamber

Abstract

Improper monitoring of sewage networks may raise various issues such as overflows, pipe blockages, theft of manhole covers, leading to flooding and pollution, infrastructure damage, vehicles accidents, injury, and even death from falling into open manholes. The key objective of this research was to examine different elements and create a prototype architecture for a real-time sewer monitoring system. Implementation of the architecture involved constructing a data gathering station and experimenting with various wireless sensing devices to assess the precision of the sensors. In addition, the study sought to design a geographic information system that integrates algorithms capable of identifying sewer overflow, blocked pipes, and the presence of manhole covers. The performance of Sharp GP2Y0A41SK0F infrared, TF-Luna Benewake LiDar, TOF400 VL53L1X laser, JSN-SR04T ultrasonic distance sensors was tested in terms of their ability to monitor water level and manhole cover. Tests revealed the most favorable results in TOF400 VL53L1X at distances between 0.2 and 1.0 m (presumed distance to the manhole cover) with a standard deviation of 0.13–0.24, and in TF-Luna Benewake at distances between 1.0 and 5.0 m (presumed distance to the chamber bottom) with a standard deviation of 0.44–1.15. The deviation analysis has yielded equations that can be utilized to provide rough estimates of the accuracy levels of the aforementioned sensors, based on the measured distance. Additionally, the FC-28 analog and YL-63 infrared sensors were evaluated for detecting pipe blockages, with the YL-63 being more suitable. The outcomes of this study furnish valuable insights that can aid in achieving sustainable resolutions for issues related to sewer monitoring

Supporting Agency

  • The authors acknowledge research group members Prof. Dr. Assel Tulebekova, Assoc. Prof. Dr. Zhanbolat Shakhmov, and Dr. Sungat Akhazhanov for their valuable contribution to implement current study under Grant № АР09057970.

Author Biographies

Yelbek Utepov, Solid Research Group (LLP); L.N. Gumilyov Eurasian National University

PhD, Professor

Supervisor of Research Projects

Professor

Department of Civil Engineering

Alexandr Neftissov, Astana IT University

PhD, Associate Professor

Director

Research and Innovation Center «Industry 4.0»

Timoth Mkilima, Solid Research Group (LLP)

PhD, Senior Researcher

Assel Mukhamejanova, Solid Research Group (LLP)

PhD, Senior Lecturer

Shyngys Zharassov, Solid Research Group (LLP); L.N. Gumilyov Eurasian National University

MSc, Junior Researcher, PhD Student

Department of Civil Engineering

Alizhan Kazkeyev, Solid Research Group (LLP); L.N. Gumilyov Eurasian National University

MSc, Junior Researcher, PhD Student

Department of Civil Engineering

Andrii Biloshchytskyi, Astana IT University; Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Vice-Rector of the Science and Innovation 

Department of Information Technology

References

  1. Jia, Y., Zheng, F., Maier, H. R., Ostfeld, A., Creaco, E., Savic, D. et al. (2021). Water quality modeling in sewer networks: Review and future research directions. Water Research, 202, 117419. doi: https://doi.org/10.1016/j.watres.2021.117419
  2. Kolesnikova, O., Vasilyeva, N., Kolesnikov, A., Zolkin, A. (2022). Optimization of raw mix using technogenic waste to produce cement clinker. Mining Informational and Analytical Bulletin, 10-1, 103–115. doi: https://doi.org/10.25018/0236_1493_2022_101_0_103
  3. Kolesnikova, O., Syrlybekkyzy, S., Fediuk, R., Yerzhanov, A., Nadirov, R., Utelbayeva, A. et al. (2022). Thermodynamic Simulation of Environmental and Population Protection by Utilization of Technogenic Tailings of Enrichment. Materials, 15 (19), 6980. doi: https://doi.org/10.3390/ma15196980
  4. Patil, V., Kadam, A. (2022). Problems and Perspectives of the Urban Sewage System: A Geographical Review. RESEARCH REVIEW International Journal of Multidisciplinary, 4, 2815–2819. Available at: https://www.researchgate.net/publication/360388311_Problems_and_Perspectives_of_the_Urban_Sewage_System_A_Geographical_Review
  5. Sojobi, A. O., Zayed, T. (2022). Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environmental Research, 203, 111609. doi: https://doi.org/10.1016/j.envres.2021.111609
  6. Mok, C. M. E., Wong, K., Shea, Y. K. G., Chen, W., Cheng, S. C. L. (2014). Design and algorithm development of an expert system for continuous health monitoring of sewer and storm water pipes. International Conference on Underground Utility.
  7. Patil, R., Ansari, S., Kaur Calay, R., Mustafa, M. (2021). Review of the State-of-the-art Sewer Monitoring and Maintenance Systems Pune Municipal Corporation - A Case Study. TEM Journal, 10 (4), 1500–1508. doi: https://doi.org/10.18421/tem104-02
  8. Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., Dario, P. (2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY. Sensors, 20 (5), 1459. doi: https://doi.org/10.3390/s20051459
  9. Beheshti, M., Sægrov, S. (2019). Detection of extraneous water ingress into the sewer system using tandem methods – a case study in Trondheim city. Water Science and Technology, 79 (2), 231–239. doi: https://doi.org/10.2166/wst.2019.057
  10. Tuomari, D. C., Thompson, S. (2004). “Sherlocks of stormwater” effective investigation techniques for illicit connection and discharge detection. Proceedings of the Water Environment Federation, 2004 (16), 1252–1259. doi: https://doi.org/10.2175/193864704784147098
  11. Martini, A., Troncossi, M., Rivola, A. (2016). Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements. Applied Sciences, 7 (1), 2. doi: https://doi.org/10.3390/app7010002
  12. Moradi, S., Zayed, T. (2017). Real-Time Defect Detection in Sewer Closed Circuit Television Inspection Videos. Pipelines 2017. doi: https://doi.org/10.1061/9780784480885.027
  13. Wai-Lok Lai, W., Dérobert, X., Annan, P. (2018). A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT & E International, 96, 58–78. doi: https://doi.org/10.1016/j.ndteint.2017.04.002
  14. James, C. S. (2019). Flow-Measuring Structures. Hydraulic Structures, 243–282. doi: https://doi.org/10.1007/978-3-030-34086-5_7
  15. Wang, Y., Li, P., Li, J. (2022). The monitoring approaches and non-destructive testing technologies for sewer pipelines. Water Science and Technology, 85 (10), 3107–3121. doi: https://doi.org/10.2166/wst.2022.120
  16. Frehmann, T., Niemann, A., Ustohal, P., Geiger, W. F. (2002). Effects of real time control of sewer systems on treatment plant performance and receiving water quality. Water Science and Technology, 45 (3), 229–237. doi: https://doi.org/10.2166/wst.2002.0083
  17. Rony, J. H., Karim, N., Rouf, MD. A., Islam, Md. M., Uddin, J., Begum, M. (2021). A Cost-Effective IoT Model for a Smart Sewerage Management System Using Sensors. J, 4 (3), 356–366. doi: https://doi.org/10.3390/j4030027
  18. Alshami, A., Elsayed, M., Mohandes, S. R., Kineber, A. F., Zayed, T., Alyanbaawi, A., Hamed, M. M. (2022). Performance Assessment of Sewer Networks under Different Blockage Situations Using Internet-of-Things-Based Technologies. Sustainability, 14 (21), 14036. doi: https://doi.org/10.3390/su142114036
  19. Utepov, Y., Kazkeyev, A., Aniskin, A. (2021). A multi-criteria analysis of sewer monitoring methods for locating pipe blockages and manhole overflows. Technobius, 1 (4), 0006. doi: https://doi.org/10.54355/tbus/1.4.2021.0006
  20. Duran, O., Althoefer, K., Seneviratne, L. D. (2002). State of the art in sensor technologies for sewer inspection. IEEE Sensors Journal, 2 (2), 73–81. doi: https://doi.org/10.1109/jsen.2002.1000245
  21. Pendharkar, A., Chillapalli, J., Dhakate, K., Gogoi, S., Jadhav, Y. (2020). IoT Based Sewage Monitoring System. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3697395
  22. Chillapalli, J., H. Jadhav, Y. (2020). IoT based Sewage gas Monitoring and Alert System using Raspberry PI. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6 (4), 567–573. doi: https://doi.org/10.32628/cseit12064114
  23. Amutha, M., Kamali, S., Sherli, T. (2022). Smart Manhole Managing and Monitoring System using IoT. Proceedings of The International Conference on Emerging Trends in Artificial Intelligence and Smart Systems, THEETAS 2022. Jabalpur. doi: https://doi.org/10.4108/eai.16-4-2022.2318149
  24. Ilamurugan, G., Akiladevi, R. (2017). Integrated detection of open drainage and overflow, current leakage and rbage monitoring in IoT environment. International Journal of Creative Research Thoughts, 5 (4), 2602–2607. Available at: https://ijcrt.org/papers/IJCRT1704337.pdf
  25. Jan, F., Min-Allah, N., Saeed, S., Iqbal, S. Z., Ahmed, R. (2022). IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks. Water, 14 (3), 309. doi: https://doi.org/10.3390/w14030309
  26. Yu, Y., Safari, A., Niu, X., Drinkwater, B., Horoshenkov, K. V. (2021). Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review. Applied Acoustics, 183, 108282. doi: https://doi.org/10.1016/j.apacoust.2021.108282
  27. Bhosale, P., Mithapelli, S., Bollabattin, S., Patel, R., Bhalerao, A., Patil, D. D. (2021). IoT based system for detection of sewage blockages. Information Technology in Industry, 9 (1), 961–970. doi: https://doi.org/10.17762/itii.v9i1.224
  28. Patel, N. (2014). A Sensor Based Web GIS System for Urban Sewage Monitoring. International Journal of Engineering Research & Technology (IJERT), 3 (1), 1933–1936. Available at: https://www.ijert.org/research/a-sensor-based-web-gis-system-for-urban-sewage-monitoring-IJERTV3IS10805.pdf
  29. Häring, I. (2021). Models for Hardware and Software Development Processes. Technical Safety, Reliability and Resilience, 179–192. doi: https://doi.org/10.1007/978-981-33-4272-9_10
  30. Ogura, H. (2005). Analog Output Type Distance Measuring Sensor GP2Y0A41SK0F. Available at: https://www.sharpsde.com/fileadmin/products/Optoelectronics/Sensors/Specs/GP2Y0A41SK0F_25Apr05_Spec_ED05G101.pdf
  31. TOF laser ranging sensor module. Available at: https://download.kamami.pl/p587523-H21c81639dd5346518ca0cabd3a832b4a1.jpg
  32. JSN SR04T DC 5V Ultrasonic Module Distance Measuring Transducer Sensor IO Port Waterproof For Arduino. Available at: https://www.diymore.cc/collections/sensor-module/products/high-accuracy-jsn-sr04t-dc-5v-ultrasonic-module-distance-measuring-transducer-sensor-io-port-waterproof-for-arduino?_pos=2&_sid=2c5c55d16&_ss=r
  33. TF-Luna 8m Low Cost Distance Sensor Modual. Available at: https://en.benewake.com/TFLuna/index_proid_328.html
  34. FC-28 Soil Hygrometer (Moisture) Sensor. Available at: https://www.uruktech.com/product/fc-28-soil-hygrometer-sensor/
  35. YL-63 Infrared & Photoelectric Sensor Modules. Available at: http://us.100y.com.tw/viewproduct.asp?MNo=95649
  36. Daily Official (market) Foreign Exchange Rates. Available at: https://nationalbank.kz/en/exchangerates/ezhednevnye-oficialnye-rynochnye-kursy-valyut
  37. ATmega328P. 8-Bit AVR Microcontroller with 32K Bytes In-System Programmable Flash. Available at: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
  38. ESP8266EX Datasheet. Available at: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
  39. NodeMCU ESP8266 Detailed Review. Available at: https://www.make-it.ca/nodemcu-details-specifications/#:~:text=UART
  40. SD Card Module (3.3V/5.0V Arduino-Compatible, Micro SD Reader/Writer). Available at: https://makersportal.com/shop/arduino-compatible-micro-sd-card-module
  41. Ra-02 LoRa Product Specification V1.1. Available at: https://docs.ai-thinker.com/_media/lora/docs/c048ps01a1_ra-02_product_specification_v1.1.pdf
  42. GSM/GPRS Module. SIM800L. Available at: https://simcom.ee/documents/SIM800L/SIM800L%20SPEC170914.pdf
  43. ABS Black Plastic Electronics Project Box Enclosure Hobby Case with Screws. Available at: https://digitalzakka.com/product/abs-black-plastic-electronics-project-box-enclosure-hobby-case-with-screws/
  44. Utepov, Ye. B. (2021). Effect of the shape and structure of maturity sensor’s plastic housing on its physico-mechanical properties. Eurasian Physical Technical Journal, 18 (3 (37)), 83–87. doi: https://doi.org/10.31489/2021no3/83-87
  45. LS 14500. Primary Li-SOCI2 cell. Available at: https://www.saft.com/download_file/6X7JMGAnv3Fm6HdmtEv%252B2gtlbZ1bRRVHkjS11M6md92GD2EF7vU%252F3Oybbz3WOlG%252BxR8srpA5iCdJ%252FV3IQzTVHQyiTucngZKEg9KkYCLkowAvgaG1huqyXUIQvO1qUkZjGCfaa8Bj8zATp1fXJiJXWOMWYOmKIKGl%252B2HKVzqrqCKI1yMfBQ%253D%253D/Data.Sheet.pdf
  46. W Single Output Switching Power Supply. Available at: https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/RS-15/RS-15-spec.pdf
  47. PCB design made easy for every engineer. Available at: https://www.autodesk.com/products/eagle/overview?term=1-YEAR&tab=subscription
  48. Arduino IDE 2.1.0. Available at: https://www.arduino.cc/en/software
  49. MariaDB Server: The open source relational database. Available at: https://mariadb.org/
  50. Why Spring? Available at: https://spring.io/why-spring
  51. The library for web and native user interfaces. Available at: https://react.dev/
  52. A high-performance, feature-packed library for all your mapping needs. Available at: https://openlayers.org/
  53. Extremely Accurate I2C-Integrated RTC/TCXO/Crystal. Available at: https://www.analog.com/media/en/technical-documentation/data-sheets/ds3231.pdf
  54. Gruber, G., Winkler, S., Pressl, A. (2005). Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies. Water Science and Technology, 52 (12), 215–223. doi: https://doi.org/10.2166/wst.2005.0466
  55. Siemers, L., Dodd, J., Day, D., Kerr, D., LaGorga, J., Romano, P. (2011). Low Cost Overflow Monitoring Techniques and Hydraulic Modeling of A Complex Sewer Network. Proceedings of the Water Environment Federation, 2011 (5), 571–583. doi: https://doi.org/10.2175/193864711802837363
  56. Wani, O., Scheidegger, A., Carbajal, J. P., Rieckermann, J., Blumensaat, F. (2017). Parameter estimation of hydrologic models using a likelihood function for censored and binary observations. Water Research, 121, 290–301. doi: https://doi.org/10.1016/j.watres.2017.05.038
  57. Rasmussen, M. R., Thorndahl, S., Schaarup-Jensen, K. (2008). A Low Cost Calibration Method for Urban Drainage Models. 11th International Conference on Urban Drainage: Edinburgh International Conference Centre. Available at: https://vbn.aau.dk/ws/portalfiles/portal/14970929/A_Low_Cost_Calibration_Method_for_Urban_Drainage_Models
  58. Jeanbourquin, D., Sage, D., Nguyen, L., Schaeli, B., Kayal, S., Barry, D. A., Rossi, L. (2011). Flow measurements in sewers based on image analysis: automatic flow velocity algorithm. Water Science and Technology, 64 (5), 1108–1114. doi: https://doi.org/10.2166/wst.2011.176
  59. Lo, S.-W., Wu, J.-H., Lin, F.-P., Hsu, C.-H. (2015). Visual Sensing for Urban Flood Monitoring. Sensors, 15 (8), 20006–20029. doi: https://doi.org/10.3390/s150820006
Prototyping an integrated IoT-based real-time sewer monitoring system using low-power sensors

Downloads

Published

2023-06-30

How to Cite

Utepov, Y., Neftissov, A., Mkilima, T., Mukhamejanova, A., Zharassov, S., Kazkeyev, A., & Biloshchytskyi, A. (2023). Prototyping an integrated IoT-based real-time sewer monitoring system using low-power sensors. Eastern-European Journal of Enterprise Technologies, 3(5 (123), 6–23. https://doi.org/10.15587/1729-4061.2023.283393

Issue

Section

Applied physics