Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels
DOI:
https://doi.org/10.15587/1729-4061.2023.286078Keywords:
heat resistance of an external fence, humidity regime of an external fence, air regime of an external fence, closed air channels, heat-reflecting screenAbstract
This study reports the design of new models of energy-saving enclosing structures with air channels. To calculate the thermophysical parameters of external fences, the Maple computer algebra system was used; the value of thermal resistance of structures was determined on the basis of a finite-element method in ANSYS. The result of the structure analysis showed that the value of thermal inertia of the traditional design and the average value of the thermal inertia of the developed structures were equal. However, the vibration amplitude of the designed enclosing structures was up to 20.72 % more efficient than the traditional one. At the same time, it was revealed that the air gaps did not affect the thermal inertia of the strucure, and its parameters depended only on the total thickness of the material. The analysis showed that the vapor permeability of the inner wall of the designed structures was equal to the traditional one. However, the value of resistance to vapor permeation of the fence of the developed structures was 3.21 % more effective. At the same time, the use of a closed air layer with a heat-reflecting screen makes it possible to shift the possible condensation zone towards the outer surface of the fence. An analysis of the check for the non-condensation of condensate in the ventilated air gap showed that condensate did not fall out in the ventilated air gap in all the considered schemes, and the results of the analysis by the air permeability value showed that all fencing schemes met the requirements for air permeability. Solving the problems of energy saving in construction through the development of new energy-efficient designs of enclosing structures help reduce the cost of thermal energy of buildings, which is an urgent task all over the world today
References
- Mirovoe potreblenie elektroenergii mozhet vyrasti na 50% k 2035 godu. Available at: https://tass.ru/ekonomika/4557505
- World Energy Assessment (2000). Available at: https://web.archive.org/web/20201112004050/http://www.undp.org/content/dam/aplaws/publication/en/publications/environment-energy/www-ee-library/sustainable-energy/world-energy-assessment-energy-and-the-challenge-of-sustainability/World%20Energy%20Assessment-2000.pdf
- Johansson, T. B., McCormick, K., Neij, L., Turkenburg, W. (2004). The Potentials of Renewable Energy. Proceedings for the International Conference for Renewable Energies. Bonn.
- de Vries, B. J. M., van Vuuren, D. P., Hoogwijk, M. M. (2007). Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35 (4), 2590–2610. doi: https://doi.org/10.1016/j.enpol.2006.09.002
- . Zhangabay, N., Abshenov, K., Bakhbergen, S., Zhakash, A., Moldagaliyev, A. (2022). Evaluating the Effectiveness of Energy-Saving Retrofit Strategies for Residential Buildings. International Review of Civil Engineering (IRECE), 13 (2), 118. doi: https://doi.org/10.15866/irece.v13i2.20933
- Kudabayev, R., Suleimenov, U., Ristavletov, R., Kasimov, I., Kambarov, M., Zhangabay, N., Abshenov, K. (2022). Modeling the Thermal Regime of a Room in a Building with a Thermal Energy Storage Envelope. Mathematical Modelling of Engineering Problems, 9 (2), 351–358. doi: https://doi.org/10.18280/mmep.090208
- Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S. et al. (2022). Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies, 6 (8 (120)), 26–37. doi: https://doi.org/10.15587/1729-4061.2022.268618
- Suleimenov, U., Zhangabay, N., Utelbayeva, A., Mohamad, N., Moldagaliyev, A., Abshenov, K. et al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
- Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. et al. (2022). Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads . Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.254218
- Suleimenov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A., Dosmakanbetova, A., Abshenov, K. et al. (2022). Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall. Eastern-European Journal of Enterprise Technologies, 1 (7 (115)), 6–20. doi: https://doi.org/10.15587/1729-4061.2022.252599
- Suleimenov, U., Zhangabay, N., Abshenov, K., Utelbayeva, A., Imanaliyev, K., Mussayeva, S. et al. (2022). Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections . Eastern-European Journal of Enterprise Technologies, 3 (7 (117)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.258118
- Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. (2022). Influence of the parameters of the pre-stressed winding on the oscillations of vertical cylindrical steel oil tanks. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.265107
- Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Kambarov, M., Abildabekov, A. et al. (2023). Oscillation frequencies of the reinforced wall of a steel vertical cylindrical tank for petroleum products depending on winding pre-tension. Eastern-European Journal of Enterprise Technologies, 3 (7 (123)), 14–25. doi: https://doi.org/10.15587/1729-4061.2023.279098
- Zhangabay, N., Sapargaliyeva, B., Suleimenov, U., Abshenov, K., Utelbayeva, A., Kolesnikov, A. et al. (2022). Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials, 15 (16), 5732. doi: https://doi.org/10.3390/ma15165732
- Zhangabay, N., Sapargaliyeva, B., Utelbayeva, A., Kolesnikov, A., Aldiyarov, Z., Dossybekov, S. et al. (2022). Experimental Analysis of the Stress State of a Prestressed Cylindrical Shell with Various Structural Parameters. Materials, 15 (14), 4996. doi: https://doi.org/10.3390/ma15144996
- Zhangabay, N., Ibraimova, U., Suleimenov, U., Moldagaliyev, A., Buganova, S., Jumabayev, A. et al. (2023). Factors affecting extended avalanche destructions on long-distance gas pipe lines: Review. Case Studies in Construction Materials, 19, e02376. doi: https://doi.org/10.1016/j.cscm.2023.e02376
- Mavromatidis, L. E., Bykalyuk, A., Mankibi, M. E., Michel, P., Santamouris, M. (2012). Numerical estimation of air gaps’ influence on the insulating performance of multilayer thermal insulation. Building and Environment, 49, 227–237. doi: https://doi.org/10.1016/j.buildenv.2011.09.029
- Alhefnawi, M. A. M., Abdu-Allah Al-Qahtany, M. (2016). Thermal Insulation Efficiency of Unventilated Air-Gapped Facades in Hot Climate. Arabian Journal for Science and Engineering, 42 (3), 1155–1160. doi: https://doi.org/10.1007/s13369-016-2370-5
- Abdullah, H. K., Faraj, S. H. (2021). Experimental study for the effect of air gap in building walls on heat gain reduction. Materials Today: Proceedings, 61, 1043–1051. doi: https://doi.org/10.1016/j.matpr.2021.10.308
- Zhangabay, N., Baidilla, I., Tagybayev, A., Suleimenov, U., Kurganbekov, Z., Kambarov, M. et al. (2023). Thermophysical indicators of elaborated sandwich cladding constructions with heat-reflective coverings and air gaps. Case Studies in Construction Materials, 18, e02161. doi: https://doi.org/10.1016/j.cscm.2023.e02161
- Zhu, L., Yang, Y., Chen, S., Sun, Y. (2018). Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Applied Thermal Engineering, 138, 35–47. doi: https://doi.org/10.1016/j.applthermaleng.2018.03.103
- Zhangabay, N., Tagybayev, A., Utelbayeva, A., Buganova, S., Tolganbayev, A., Tulesheva, G. et al. (2023). Analysis of the influence of thermal insulation material on the thermal resistance of new facade structures with horizontal air channels. Case Studies in Construction Materials, 18, e02026. doi: https://doi.org/10.1016/j.cscm.2023.e02026
- Zhangabay, N., Baidilla, I., Tagybayev, A., Sultan, B. (2023). Analysis of Thermal Resistance of Developed Energy-Saving External Enclosing Structures with Air Gaps and Horizontal Channels. Buildings, 13 (2), 356. doi: https://doi.org/10.3390/buildings13020356
- Zhangabay, N., Tagybayev, A., Baidilla, I., Sapargaliyeva, B., Shakeshev, B., Baibolov, K. et al. (2023). Multilayer External Enclosing Wall Structures with Air Gaps or Channels. Journal of Composites Science, 7 (5), 195. doi: https://doi.org/10.3390/jcs7050195
- Pelletier, K., Wood, C., Calautit, J., Wu, Y. (2023). The viability of double-skin façade systems in the 21st century: A systematic review and meta-analysis of the nexus of factors affecting ventilation and thermal performance, and building integration. Building and Environment, 228, 109870. doi: https://doi.org/10.1016/j.buildenv.2022.109870
- Jankovic, A., Goia, F. (2021). Impact of double skin facade constructional features on heat transfer and fluid dynamic behaviour. Building and Environment, 196, 107796. doi: https://doi.org/10.1016/j.buildenv.2021.107796
- Roosmalen, M., Herrmann, A., Kumar, A. (2021). A review of prefabricated self-sufficient facades with integrated decentralised HVAC and renewable energy generation and storage. Energy and Buildings, 248, 111107. doi: https://doi.org/10.1016/j.enbuild.2021.111107
- Ibañez-Puy, M., Vidaurre-Arbizu, M., Sacristán-Fernández, J. A., Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, 79, 180–191. doi: https://doi.org/10.1016/j.rser.2017.05.059
- Ndiaye, K., Ginestet, S., Cyr, M. (2018). Thermal energy storage based on cementitious materials: A review. AIMS Energy, 6 (1), 97–120. doi: https://doi.org/10.3934/energy.2018.1.97
- Utelbaeva, A. B., Ermakhanov, M. N., Zhanabai, N. Zh., Utelbaev, B. T., Mel’deshov, A. A. (2013). Hydrogenation of benzene in the presence of ruthenium on a modified montmorillonite support. Russian Journal of Physical Chemistry A, 87 (9), 1478–1481. doi: https://doi.org/10.1134/s0036024413090276
- Nakashydze, L., Gabrinets, V., Mitikov, Y., Alekseyenko, S., Liashenko, I. (2021). Determination of features of formation of energy supply systems with the use of renewable energy sources in the transition period. Eastern-European Journal of Enterprise Technologies, 5 (8 (113)), 23–29. doi: https://doi.org/10.15587/1729-4061.2021.243112
- Hilorme, T., Nakashydze, L., Mazurik, S., Gabrinets, V., Kolbunov, V., Gomilko, I. (2022). Substantiation for the selection of parameters for ensuring electrothermal protection of solar batteries in spacecraft power systems. Eastern-European Journal of Enterprise Technologies, 3 (8 (117)), 17–24. doi: https://doi.org/10.15587/1729-4061.2022.258480
- Hilorme, T., Nakashydze, L., Tonkoshkur, A., Kolbunov, V., Gomilko, I., Mazurik, S., Ponomarov, O. (2023). Devising a calculation method for determining the impact of design features of solar panels on performance. Eastern-European Journal of Enterprise Technologies, 3 (8 (123), 30–36. doi: https://doi.org/10.15587/1729-4061.2023.280740
- Gagliano, A., Aneli, S. (2020). Analysis of the energy performance of an Opaque Ventilated Façade under winter and summer weather conditions. Solar Energy, 205, 531–544. doi: https://doi.org/10.1016/j.solener.2020.05.078
- Astorqui, J. S. C., Porras-Amores, C. (2017). Ventilated Façade with double chamber and flow control device. Energy and Buildings, 149, 471–482. doi: https://doi.org/10.1016/j.enbuild.2017.04.063
- Soudian, S., Berardi, U. (2022). Experimental performance evaluation of a climate-responsive ventilated building façade. Journal of Building Engineering, 61, 105233. doi: https://doi.org/10.1016/j.jobe.2022.105233
- Lin, Z., Song, Y., Chu, Y. (2022). An experimental study of the summer and winter thermal performance of an opaque ventilated facade in cold zone of China. Building and Environment, 218, 109108. doi: https://doi.org/10.1016/j.buildenv.2022.109108
- De Masi R. F., Festa, V., Gigante, A., Ruggiero, S., Vanoli, G. P. (2022). Experimental analysis of grills configuration for an open joint ventilated facade in summertime. Journal of Building Engineering, 54, 104608. doi: https://doi.org/10.1016/j.jobe.2022.104608
- SP RK 2.04-107-2013. Stroitel'naya teplotekhnika: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Svod pravil respubliki Kazakhstan. Available at: https://online.zakon.kz/document/?doc_id=38080689&show_di=1&sub_id=0&pos=5;-106#pos=5;-106
- SN RK 2.04-04-2011. Teplovaya zaschita zdaniy: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://hoffmann.kz/files/12_SN_RK_2-04-04-2011.pdf
- SP RK 2.04-106-2012. Proektirovanie teplovoy zaschity zdaniy: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://online.zakon.kz/Document/?doc_id=35957424
- Thermal Convection in Heat Transfer - Course Overview. Available at: https://courses.ansys.com/index.php/courses/thermal-convection-in-heat-transfer/
- Kupriyanov, V. N., Safin, I. Sh. (2016). Proektirovanie teplozaschity naruzhnykh sten s uchetom kondensatsii vodyanogo para. Kazan', 32. Available at: https://www.kgasu.ru/upload/iblock/d13/Proektirovanie-teplozashchity-naruzhnykh-sten-s-uchetom-kondensatsii-vodyanogo-para.pdf
- SP RK 2.04-01-2017. Stroitel'naya klimatologiya: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://online.zakon.kz/document/?doc_id=33546556#sub_id=0
- Stena vsya namokla? Kak izbezhat' "tochki rosy" i vybrat' uteplitel'. Available at: https://dzen.ru/media/id/5c891947c35b2c00b3aee308/stena-vsia-namokla-kak-izbejat-tochki-rosy-i-vybrat-uteplitel-5e1cd2233d008800afe2d6c1
- SP 50.13330.2012. Teplovaya zaschita zdaniy. Available at: https://aluprof.su/index.php/dokumentatsiya/gosty-i-snipy
- Metodika rascheta norm potrebleniya szhizhennogo uglevodorodnogo gaza naseleniem pri otsutstvii priborov ucheta gaza. Prilozhenie 7. Algoritm opredeleniya uslovnogo koeffitsienta teploperedachi zdaniya s uchetom teplopoter' za schet infil'tratsii i ventilyatsii. Available at: https://files.stroyinf.ru/Data2/1/4293824/4293824749.pdf
- Gagarin, V. G. (2005). O nekotorykh teplotekhnicheskikh oshibkakh, dopuskaemykh pri proektirovanii ventiliruemykh fasadov. AVOK, 2, 52–60. Available at: https://www.abok.ru/for_spec/articles.php?nid=2785
- Umnyakova, N. P. (2014). Heat Protection of Cloused Air Spaces with Reflective Insulation. Zhilishchnoe Stroitelstvo, 1-2, 16–20. Available at: https://cyberleninka.ru/article/n/teplozaschita-zamknutyh-vozdushnyh-prosloek-s-otrazhatelnoyteploizolyatsiey
- Khoshev, Yu. V. (2008). Dachnye bani i pechi. Printsipy konstruirovaniya. Moscow: ZAO «Kniga i biznes», 640. Available at: http://www.gornilo.ru/08art-im/fHoshev/p1_31gl12.pdf
- Sakhin, V. V., Gerliman, E. M., Brykov, N. A. (2019). Teploperedacha v primerakh i zadachakh. Sankt-Peterburg, 165. Available at: http://www.library.voenmeh.ru/cnau/8yCJlPwJVElpmHv.pdf
- Isachenko, V. P., Osipov, V. A., Sukomel, A. S. (1981). Teploperedacha. Moscow: Energoizdat, 416.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Askhat Tagybayev, Nurlan Zhangabay, Ulanbator Suleimenov, Konstantin Avramov, Borys Uspenskyi, Altynsary Umbitaliyev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.