Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.286078

Keywords:

heat resistance of an external fence, humidity regime of an external fence, air regime of an external fence, closed air channels, heat-reflecting screen

Abstract

This study reports the design of new models of energy-saving enclosing structures with air channels. To calculate the thermophysical parameters of external fences, the Maple computer algebra system was used; the value of thermal resistance of structures was determined on the basis of a finite-element method in ANSYS. The result of the structure analysis showed that the value of thermal inertia of the traditional design and the average value of the thermal inertia of the developed structures were equal. However, the vibration amplitude of the designed enclosing structures was up to 20.72 % more efficient than the traditional one. At the same time, it was revealed that the air gaps did not affect the thermal inertia of the strucure, and its parameters depended only on the total thickness of the material. The analysis showed that the vapor permeability of the inner wall of the designed structures was equal to the traditional one. However, the value of resistance to vapor permeation of the fence of the developed structures was 3.21 % more effective. At the same time, the use of a closed air layer with a heat-reflecting screen makes it possible to shift the possible condensation zone towards the outer surface of the fence. An analysis of the check for the non-condensation of condensate in the ventilated air gap showed that condensate did not fall out in the ventilated air gap in all the considered schemes, and the results of the analysis by the air permeability value showed that all fencing schemes met the requirements for air permeability. Solving the problems of energy saving in construction through the development of new energy-efficient designs of enclosing structures help reduce the cost of thermal energy of buildings, which is an urgent task all over the world today

Author Biographies

Askhat Tagybayev, Mukhtar Auezov South Kazakhstan University

Doctoral Student

Department of Construction and Construction Materials

Nurlan Zhangabay, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Construction and Construction Materials

Ulanbator Suleimenov, Shymkent University

Doctor of Technical Sciences, Professor

Department of Construction

Konstantin Avramov, A. Pidhornyi Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine

Doctor of Technical Sciences, Professor, Ukraine State price in Science and Engineering Winner, Academician of Ukraine Engineering Academy, Head of Department

Department of Reliability and Dynamic Strength

Borys Uspenskyi, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD

Department of Reliability and Dynamic Strength

Altynsary Umbitaliyev, Shymkent University

Doctor in Economics, Professor

Department of Economics

References

  1. Mirovoe potreblenie elektroenergii mozhet vyrasti na 50% k 2035 godu. Available at: https://tass.ru/ekonomika/4557505
  2. World Energy Assessment (2000). Available at: https://web.archive.org/web/20201112004050/http://www.undp.org/content/dam/aplaws/publication/en/publications/environment-energy/www-ee-library/sustainable-energy/world-energy-assessment-energy-and-the-challenge-of-sustainability/World%20Energy%20Assessment-2000.pdf
  3. Johansson, T. B., McCormick, K., Neij, L., Turkenburg, W. (2004). The Potentials of Renewable Energy. Proceedings for the International Conference for Renewable Energies. Bonn.
  4. de Vries, B. J. M., van Vuuren, D. P., Hoogwijk, M. M. (2007). Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35 (4), 2590–2610. doi: https://doi.org/10.1016/j.enpol.2006.09.002
  5. . Zhangabay, N., Abshenov, K., Bakhbergen, S., Zhakash, A., Moldagaliyev, A. (2022). Evaluating the Effectiveness of Energy-Saving Retrofit Strategies for Residential Buildings. International Review of Civil Engineering (IRECE), 13 (2), 118. doi: https://doi.org/10.15866/irece.v13i2.20933
  6. Kudabayev, R., Suleimenov, U., Ristavletov, R., Kasimov, I., Kambarov, M., Zhangabay, N., Abshenov, K. (2022). Modeling the Thermal Regime of a Room in a Building with a Thermal Energy Storage Envelope. Mathematical Modelling of Engineering Problems, 9 (2), 351–358. doi: https://doi.org/10.18280/mmep.090208
  7. Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S. et al. (2022). Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies, 6 (8 (120)), 26–37. doi: https://doi.org/10.15587/1729-4061.2022.268618
  8. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Mohamad, N., Moldagaliyev, A., Abshenov, K. et al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
  9. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. et al. (2022). Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads . Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.254218
  10. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A., Dosmakanbetova, A., Abshenov, K. et al. (2022). Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall. Eastern-European Journal of Enterprise Technologies, 1 (7 (115)), 6–20. doi: https://doi.org/10.15587/1729-4061.2022.252599
  11. Suleimenov, U., Zhangabay, N., Abshenov, K., Utelbayeva, A., Imanaliyev, K., Mussayeva, S. et al. (2022). Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections . Eastern-European Journal of Enterprise Technologies, 3 (7 (117)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.258118
  12. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. (2022). Influence of the parameters of the pre-stressed winding on the oscillations of vertical cylindrical steel oil tanks. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.265107
  13. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Kambarov, M., Abildabekov, A. et al. (2023). Oscillation frequencies of the reinforced wall of a steel vertical cylindrical tank for petroleum products depending on winding pre-tension. Eastern-European Journal of Enterprise Technologies, 3 (7 (123)), 14–25. doi: https://doi.org/10.15587/1729-4061.2023.279098
  14. Zhangabay, N., Sapargaliyeva, B., Suleimenov, U., Abshenov, K., Utelbayeva, A., Kolesnikov, A. et al. (2022). Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials, 15 (16), 5732. doi: https://doi.org/10.3390/ma15165732
  15. Zhangabay, N., Sapargaliyeva, B., Utelbayeva, A., Kolesnikov, A., Aldiyarov, Z., Dossybekov, S. et al. (2022). Experimental Analysis of the Stress State of a Prestressed Cylindrical Shell with Various Structural Parameters. Materials, 15 (14), 4996. doi: https://doi.org/10.3390/ma15144996
  16. Zhangabay, N., Ibraimova, U., Suleimenov, U., Moldagaliyev, A., Buganova, S., Jumabayev, A. et al. (2023). Factors affecting extended avalanche destructions on long-distance gas pipe lines: Review. Case Studies in Construction Materials, 19, e02376. doi: https://doi.org/10.1016/j.cscm.2023.e02376
  17. Mavromatidis, L. E., Bykalyuk, A., Mankibi, M. E., Michel, P., Santamouris, M. (2012). Numerical estimation of air gaps’ influence on the insulating performance of multilayer thermal insulation. Building and Environment, 49, 227–237. doi: https://doi.org/10.1016/j.buildenv.2011.09.029
  18. Alhefnawi, M. A. M., Abdu-Allah Al-Qahtany, M. (2016). Thermal Insulation Efficiency of Unventilated Air-Gapped Facades in Hot Climate. Arabian Journal for Science and Engineering, 42 (3), 1155–1160. doi: https://doi.org/10.1007/s13369-016-2370-5
  19. Abdullah, H. K., Faraj, S. H. (2021). Experimental study for the effect of air gap in building walls on heat gain reduction. Materials Today: Proceedings, 61, 1043–1051. doi: https://doi.org/10.1016/j.matpr.2021.10.308
  20. Zhangabay, N., Baidilla, I., Tagybayev, A., Suleimenov, U., Kurganbekov, Z., Kambarov, M. et al. (2023). Thermophysical indicators of elaborated sandwich cladding constructions with heat-reflective coverings and air gaps. Case Studies in Construction Materials, 18, e02161. doi: https://doi.org/10.1016/j.cscm.2023.e02161
  21. Zhu, L., Yang, Y., Chen, S., Sun, Y. (2018). Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Applied Thermal Engineering, 138, 35–47. doi: https://doi.org/10.1016/j.applthermaleng.2018.03.103
  22. Zhangabay, N., Tagybayev, A., Utelbayeva, A., Buganova, S., Tolganbayev, A., Tulesheva, G. et al. (2023). Analysis of the influence of thermal insulation material on the thermal resistance of new facade structures with horizontal air channels. Case Studies in Construction Materials, 18, e02026. doi: https://doi.org/10.1016/j.cscm.2023.e02026
  23. Zhangabay, N., Baidilla, I., Tagybayev, A., Sultan, B. (2023). Analysis of Thermal Resistance of Developed Energy-Saving External Enclosing Structures with Air Gaps and Horizontal Channels. Buildings, 13 (2), 356. doi: https://doi.org/10.3390/buildings13020356
  24. Zhangabay, N., Tagybayev, A., Baidilla, I., Sapargaliyeva, B., Shakeshev, B., Baibolov, K. et al. (2023). Multilayer External Enclosing Wall Structures with Air Gaps or Channels. Journal of Composites Science, 7 (5), 195. doi: https://doi.org/10.3390/jcs7050195
  25. Pelletier, K., Wood, C., Calautit, J., Wu, Y. (2023). The viability of double-skin façade systems in the 21st century: A systematic review and meta-analysis of the nexus of factors affecting ventilation and thermal performance, and building integration. Building and Environment, 228, 109870. doi: https://doi.org/10.1016/j.buildenv.2022.109870
  26. Jankovic, A., Goia, F. (2021). Impact of double skin facade constructional features on heat transfer and fluid dynamic behaviour. Building and Environment, 196, 107796. doi: https://doi.org/10.1016/j.buildenv.2021.107796
  27. Roosmalen, M., Herrmann, A., Kumar, A. (2021). A review of prefabricated self-sufficient facades with integrated decentralised HVAC and renewable energy generation and storage. Energy and Buildings, 248, 111107. doi: https://doi.org/10.1016/j.enbuild.2021.111107
  28. Ibañez-Puy, M., Vidaurre-Arbizu, M., Sacristán-Fernández, J. A., Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, 79, 180–191. doi: https://doi.org/10.1016/j.rser.2017.05.059
  29. Ndiaye, K., Ginestet, S., Cyr, M. (2018). Thermal energy storage based on cementitious materials: A review. AIMS Energy, 6 (1), 97–120. doi: https://doi.org/10.3934/energy.2018.1.97
  30. Utelbaeva, A. B., Ermakhanov, M. N., Zhanabai, N. Zh., Utelbaev, B. T., Mel’deshov, A. A. (2013). Hydrogenation of benzene in the presence of ruthenium on a modified montmorillonite support. Russian Journal of Physical Chemistry A, 87 (9), 1478–1481. doi: https://doi.org/10.1134/s0036024413090276
  31. Nakashydze, L., Gabrinets, V., Mitikov, Y., Alekseyenko, S., Liashenko, I. (2021). Determination of features of formation of energy supply systems with the use of renewable energy sources in the transition period. Eastern-European Journal of Enterprise Technologies, 5 (8 (113)), 23–29. doi: https://doi.org/10.15587/1729-4061.2021.243112
  32. Hilorme, T., Nakashydze, L., Mazurik, S., Gabrinets, V., Kolbunov, V., Gomilko, I. (2022). Substantiation for the selection of parameters for ensuring electrothermal protection of solar batteries in spacecraft power systems. Eastern-European Journal of Enterprise Technologies, 3 (8 (117)), 17–24. doi: https://doi.org/10.15587/1729-4061.2022.258480
  33. Hilorme, T., Nakashydze, L., Tonkoshkur, A., Kolbunov, V., Gomilko, I., Mazurik, S., Ponomarov, O. (2023). Devising a calculation method for determining the impact of design features of solar panels on performance. Eastern-European Journal of Enterprise Technologies, 3 (8 (123), 30–36. doi: https://doi.org/10.15587/1729-4061.2023.280740
  34. Gagliano, A., Aneli, S. (2020). Analysis of the energy performance of an Opaque Ventilated Façade under winter and summer weather conditions. Solar Energy, 205, 531–544. doi: https://doi.org/10.1016/j.solener.2020.05.078
  35. Astorqui, J. S. C., Porras-Amores, C. (2017). Ventilated Façade with double chamber and flow control device. Energy and Buildings, 149, 471–482. doi: https://doi.org/10.1016/j.enbuild.2017.04.063
  36. Soudian, S., Berardi, U. (2022). Experimental performance evaluation of a climate-responsive ventilated building façade. Journal of Building Engineering, 61, 105233. doi: https://doi.org/10.1016/j.jobe.2022.105233
  37. Lin, Z., Song, Y., Chu, Y. (2022). An experimental study of the summer and winter thermal performance of an opaque ventilated facade in cold zone of China. Building and Environment, 218, 109108. doi: https://doi.org/10.1016/j.buildenv.2022.109108
  38. De Masi R. F., Festa, V., Gigante, A., Ruggiero, S., Vanoli, G. P. (2022). Experimental analysis of grills configuration for an open joint ventilated facade in summertime. Journal of Building Engineering, 54, 104608. doi: https://doi.org/10.1016/j.jobe.2022.104608
  39. SP RK 2.04-107-2013. Stroitel'naya teplotekhnika: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Svod pravil respubliki Kazakhstan. Available at: https://online.zakon.kz/document/?doc_id=38080689&show_di=1&sub_id=0&pos=5;-106#pos=5;-106
  40. SN RK 2.04-04-2011. Teplovaya zaschita zdaniy: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://hoffmann.kz/files/12_SN_RK_2-04-04-2011.pdf
  41. SP RK 2.04-106-2012. Proektirovanie teplovoy zaschity zdaniy: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://online.zakon.kz/Document/?doc_id=35957424
  42. Thermal Convection in Heat Transfer - Course Overview. Available at: https://courses.ansys.com/index.php/courses/thermal-convection-in-heat-transfer/
  43. Kupriyanov, V. N., Safin, I. Sh. (2016). Proektirovanie teplozaschity naruzhnykh sten s uchetom kondensatsii vodyanogo para. Kazan', 32. Available at: https://www.kgasu.ru/upload/iblock/d13/Proektirovanie-teplozashchity-naruzhnykh-sten-s-uchetom-kondensatsii-vodyanogo-para.pdf
  44. SP RK 2.04-01-2017. Stroitel'naya klimatologiya: Gosudarstvennye normativy v oblasti arkhitektury, gradostroitel'stva i stroitel'stva. Available at: https://online.zakon.kz/document/?doc_id=33546556#sub_id=0
  45. Stena vsya namokla? Kak izbezhat' "tochki rosy" i vybrat' uteplitel'. Available at: https://dzen.ru/media/id/5c891947c35b2c00b3aee308/stena-vsia-namokla-kak-izbejat-tochki-rosy-i-vybrat-uteplitel-5e1cd2233d008800afe2d6c1
  46. SP 50.13330.2012. Teplovaya zaschita zdaniy. Available at: https://aluprof.su/index.php/dokumentatsiya/gosty-i-snipy
  47. Metodika rascheta norm potrebleniya szhizhennogo uglevodorodnogo gaza naseleniem pri otsutstvii priborov ucheta gaza. Prilozhenie 7. Algoritm opredeleniya uslovnogo koeffitsienta teploperedachi zdaniya s uchetom teplopoter' za schet infil'tratsii i ventilyatsii. Available at: https://files.stroyinf.ru/Data2/1/4293824/4293824749.pdf
  48. Gagarin, V. G. (2005). O nekotorykh teplotekhnicheskikh oshibkakh, dopuskaemykh pri proektirovanii ventiliruemykh fasadov. AVOK, 2, 52–60. Available at: https://www.abok.ru/for_spec/articles.php?nid=2785
  49. Umnyakova, N. P. (2014). Heat Protection of Cloused Air Spaces with Reflective Insulation. Zhilishchnoe Stroitelstvo, 1-2, 16–20. Available at: https://cyberleninka.ru/article/n/teplozaschita-zamknutyh-vozdushnyh-prosloek-s-otrazhatelnoyteploizolyatsiey
  50. Khoshev, Yu. V. (2008). Dachnye bani i pechi. Printsipy konstruirovaniya. Moscow: ZAO «Kniga i biznes», 640. Available at: http://www.gornilo.ru/08art-im/fHoshev/p1_31gl12.pdf
  51. Sakhin, V. V., Gerliman, E. M., Brykov, N. A. (2019). Teploperedacha v primerakh i zadachakh. Sankt-Peterburg, 165. Available at: http://www.library.voenmeh.ru/cnau/8yCJlPwJVElpmHv.pdf
  52. Isachenko, V. P., Osipov, V. A., Sukomel, A. S. (1981). Teploperedacha. Moscow: Energoizdat, 416.
Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels

Downloads

Published

2023-08-31

How to Cite

Tagybayev, A., Zhangabay, N., Suleimenov, U., Avramov, K., Uspenskyi, B., & Umbitaliyev, A. (2023). Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels. Eastern-European Journal of Enterprise Technologies, 4(8 (124), 32–43. https://doi.org/10.15587/1729-4061.2023.286078

Issue

Section

Energy-saving technologies and equipment