The filament winding method’s finishing process impact on high-fidelity specimens: homogenity of density, fiber volume fraction, outer surface roughness and tensile strength

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.288025

Keywords:

filament winding, CFRP, surface roughness, fabrication, fiber fraction, Void, Tensile strength

Abstract

Filament winding is a widely used method for producing tubes and pressure vessels from composite materials. However, overlapping of fibers during the winding process can lead to rough surface and increased voids in the finished product. To improve the quality of CFRP materials produced through filament winding, the structure is cured either at room temperature or in an oven with a controlled heat profile, depending on the type of resin used. Various finishing techniques, including shrink tape, compression molding, and vacuum compression molding, have been attempted to improve the quality of the specimen. Among these techniques, vacuum compression molding has been found to deliver the best results in terms of surface roughness, with average roughness (Ra) values of 0.35 μm in the fiber direction and 0.61 μm in the transverse direction. This level of roughness is comparable to that achieved through milling machine manufacturing. Moreover, this technique ensures uniformity in fiber composition and volume fraction, achieving a homogeneous density of 1364.49 kg/m3 and the highest fiber volume fraction of 63 %. As a result, remarkable mechanical attributes, such as a tensile strength of 926.07 MPa and a stiffness of 21.35 GPa, can be obtained. In addition, by utilizing various finishing techniques, the tensile strength of these properties can be increased by up to 80 %. CFRP is a versatile material with unique characteristics, and selecting appropriate finishing techniques such as vacuum compression molding can significantly enhance its overall quality and mechanical properties. However, one drawback of the filament winding method is the poor outer surface finish which can be improved by vacuum compression molding

Supporting Agency

  • This study was conducted with the framework of a funded scientific project by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia. The study Conducted in the laboratory of the National Research and Innovation Agency.

Author Biographies

Herry Purnomo, Universitas Indonesia; National Research and Innovation Agency (BRIN)

PhD Student

Department of Mechanical Engineering

Tresna Priyana Soemardi, Universitas Indonesia

Professor of Mechanical Engineering

Department of Mechanical Engineering

Hendri D.S. Budiono, Universitas Indonesia

Professor of Mechanical Engineering

Department of Mechanical Engineering

Heri Budi Wibowo, National Research and Innovation Agency (BRIN)

Professor of Chemical Engineering

Mahfud Ibadi, National Research and Innovation Agency (BRIN)

Master of Mechanical Engineering

References

  1. Gay, D. (2014). Composite materials: design and applications. Boca Raton: CRC Press, 635. doi: https://doi.org/10.1201/b17106
  2. Kaw, A. K. (2006). Mechanics of composite materials. Boca Raton, FL: Taylor & Francis. Available at: https://sarrami.iut.ac.ir/sites/sarrami.iut.ac.ir/files/files_course/01-mechanics_of_composite_materials_sbookfi.org_.pdf
  3. Quanjin, M., Rejab, M. R. M., Kaige, J., Idris, M. S., Harith, M. N. (2018). Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conference Series: Materials Science and Engineering, 342 (1), 012029. doi: https://doi.org/10.1088/1757-899x/342/1/012029
  4. Sherif, G., Chukov, D., Tcherdyntsev, V., Torokhov, V. (2019). Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers, 11 (8), 1364. doi: https://doi.org/10.3390/polym11081364
  5. Sun, G., Yu, H., Wang, Z., Xiao, Z., Li, Q. (2019). Energy absorption mechanics and design optimization of CFRP/aluminium hybrid structures for transverse loading. International Journal of Mechanical Sciences, 150, 767–783. doi: https://doi.org/10.1016/j.ijmecsci.2018.10.043
  6. Davies, P. (2016). Behavior of marine composite materials under deep submergence. Marine Applications of Advanced Fibre-Reinforced Composites, 125–145. doi: https://doi.org/10.1016/b978-1-78242-250-1.00006-5
  7. Rajak, D. K., Wagh, P. H., Linul, E. (2021). Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers, 13 (21), 3721. doi: https://doi.org/10.3390/polym13213721
  8. Vasiliev, V. V., Krikanov, A. A., Razin, A. F. (2003). New generation of filament-wound composite pressure vessels for commercial applications. Composite Structures, 62 (3-4), 449–459. doi: https://doi.org/10.1016/j.compstruct.2003.09.019
  9. Wang, R., Jiao, W., Liu, W., Yang, F., He, X. (2011). Slippage coefficient measurement for non-geodesic filament-winding process. Composites Part A: Applied Science and Manufacturing, 42 (3), 303–309. doi: https://doi.org/10.1016/j.compositesa.2010.12.002
  10. Wang, Z., Almeida, J. H. S., Ashok, A., Wang, Z., Castro, S. G. P. (2022). Lightweight design of variable-angle filament-wound cylinders combining Kriging-based metamodels with particle swarm optimization. Structural and Multidisciplinary Optimization, 65 (5). doi: https://doi.org/10.1007/s00158-022-03227-8
  11. Goodship, V., Middleton, B., Cherrington, R. (2016). Design and Manufacture of Plastic Components for Multifunctionality. Elsevier. doi: https://doi.org/10.1016/c2014-0-00223-7
  12. Quanjin, M., Rejab, M. R. M., Idris, M. S., Zhang, B., Kumar, N. M. (2019). Filament Winding Technique: SWOT Analysis and Applied Favorable Factors. SCIREA Journal of Mechanical Engineering, 3 (1). Available at: https://www.researchgate.net/publication/332329420_Filament_winding_technique_SWOT_analysis_and_applied_favorable_factors
  13. Lasn, K., Mulelid, M. (2020). The effect of processing on the microstructure of hoop-wound composite cylinders. Journal of Composite Materials, 54 (26), 3981–3997. doi: https://doi.org/10.1177/0021998320923139
  14. Fernlund, G., Wells, J., Fahrang, L., Kay, J., Poursartip, A. (2016). Causes and remedies for porosity in composite manufacturing. IOP Conference Series: Materials Science and Engineering, 139, 012002. doi: https://doi.org/10.1088/1757-899x/139/1/012002
  15. Scott, A. E., Sinclair, I., Spearing, S. M., Mavrogordato, M. N., Hepples, W. (2014). Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Composites Science and Technology, 90, 147–153. doi: https://doi.org/10.1016/j.compscitech.2013.11.004
  16. Liu, L., Zhang, B.-M., Wang, D.-F., Wu, Z.-J. (2006). Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures, 73 (3), 303–309. doi: https://doi.org/10.1016/j.compstruct.2005.02.001
  17. Ekuase, O. A., Anjum, N., Eze, V. O., Okoli, O. I. (2022). A Review on the Out-of-Autoclave Process for Composite Manufacturing. Journal of Composites Science, 6 (6), 172. doi: https://doi.org/10.3390/jcs6060172
  18. Harshe, R. (2015). A Review on Advanced Out-of-Autoclave Composites Processing. Journal of the Indian Institute of Science, 95 (3), 207–220. Available at: https://www.researchgate.net/publication/283229706_A_Review_on_Advanced_Out-of-Autoclave_Composites_Processing
  19. Peters, S. T. (Ed.) (2011). Composite filament winding. ASM International. doi: https://doi.org/10.31399/asm.tb.cfw.9781627083386
  20. Quanjin, M., Rejab, M. R. M., Idris, M. S., Bachtiar, B., Siregar, J. P., Harith, M. N. (2017). Design and optimize of 3-axis filament winding machine. IOP Conference Series: Materials Science and Engineering, 257, 012039. doi: https://doi.org/10.1088/1757-899x/257/1/012039
  21. Krysiak, P., Kaleta, J., Gąsior, P., Błachut, A., Rybczyński, R. (2017). Identification of strains in a multilayer composite pipe. Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, 186 (4), 272–282. doi: https://doi.org/10.5604/01.3001.0010.7233
  22. Mansour, G., Kyratsis, P., Korlos, A., Tzetzis, D. (2021). Investigation into the Effect of Cutting Conditions in Turning on the Surface Properties of Filament Winding GFRP Pipe Rings. Machines, 9 (1), 16. doi: https://doi.org/10.3390/machines9010016
  23. Schorník, V., Daňa, M., Zetková, I. (2015). The Influence of the Cutting Conditions on the Machined Surface Quality when the CFRP is Machined. Procedia Engineering, 100, 1270–1276. doi: https://doi.org/10.1016/j.proeng.2015.01.493
  24. Lehtiniemi, P., Dufva, K., Berg, T., Skrifvars, M., Järvelä, P. (2011). Natural fiber-based reinforcements in epoxy composites processed by filament winding. Journal of Reinforced Plastics and Composites, 30 (23), 1947–1955. doi: https://doi.org/10.1177/0731684411431019
  25. Henninger, F., Friedrich, K. (2002). Thermoplastic filament winding with online-impregnation. Part A: process technology and operating efficiency. Composites Part A: Applied Science and Manufacturing, 33 (11), 1479–1486. doi: https://doi.org/10.1016/s1359-835x(02)00135-5
  26. Andrianov, A., Tomita, E. K., Veras, C. A. G., Telles, B. (2022). A Low-Cost Filament Winding Technology for University Laboratories and Startups. Polymers, 14 (5), 1066. doi: https://doi.org/10.3390/polym14051066
  27. Geier, N., Pereszlai, C. (2019). Analysis of Characteristics of Surface Roughness of Machined CFRP Composites. Periodica Polytechnica Mechanical Engineering, 64 (1), 67–80. doi: https://doi.org/10.3311/ppme.14436
  28. Yao, Y., Chen, S. (2012). The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites. Journal of Composite Materials, 47 (23), 2909–2923. doi: https://doi.org/10.1177/0021998312459871
The filament winding method’s finishing process impact on high-fidelity specimens: homogenity of density, fiber volume fraction, outer surface roughness and tensile strength

Downloads

Published

2023-12-27

How to Cite

Purnomo, H., Soemardi, T. P., D.S. Budiono, H., Wibowo, H. B., & Ibadi, M. (2023). The filament winding method’s finishing process impact on high-fidelity specimens: homogenity of density, fiber volume fraction, outer surface roughness and tensile strength. Eastern-European Journal of Enterprise Technologies, 6(12 (126), 43–51. https://doi.org/10.15587/1729-4061.2023.288025

Issue

Section

Materials Science