Improving the accuracy of identifying objects in digital frames using a procedure of full identification of measurements

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.288940

Keywords:

image processing, parameter estimation, measurement identification, series of frames, catalog form

Abstract

The variability of shooting conditions affects the quality of images of Solar System objects in a series of frames. Identification of a frame with the corresponding part of the sky becomes difficult if the quality is poor. Because of this fact, the detection quality indicators and estimation of the position of Solar System objects are significantly reduced when using already known methods and international astronomical catalogs. To solve this problem, the procedure of full identification of measurements of objects on digital frames was devised.

This procedure is based on the formation of triplets (triangles) of primary identification from the side of the digital frame and the astronomical catalog. Positional coordinates on the frame and ideal tangential coordinates from the catalog were used. Owing to this, a comparison of the primary identification triplets was carried out by comparing the calculated angles of the triangle vertices. The identity of the hypothesis was determined by comparison with the acceptable deviation.

The use of the developed full identification procedure makes it possible to reduce the number of false detections and improve identification with reference astronomical objects. The study showed that when identifying frames, astrometry has better accuracy of reference to the starry sky. In addition, the standard deviation of frame identification errors in this case is 6–9 times less than without using the devised procedure.

The procedure developed for complete identification was practically tested within the framework of the CoLiTec project. It was implemented in the Lemur software for automated detection of new and tracking of known objects. Owing to the use of Lemur software and the proposed computational procedure implemented in it, more than 700,000 measurements of various astronomical objects under study were successfully identified.

Author Biographies

Sergii Khlamov, Kharkiv National University of Radio Electronics

PhD, Assistant

Department of Media Systems and Technologies

Vadym Savanevych, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor

Department of Systems Engineering

Vladimir Vlasenko, National Space Facilities Control and Test Center

PhD

Space Research and Communications Center

Tetiana Trunova, Kharkiv National University of Radio Electronics

Engineer, Assistant

Department of Media Systems and Technologies

Volodymyr Troianskyi, Odesa I. I. Mechnikov National University

PhD, Senior Researcher

"Astronomical Observatory" Research Institute

Roman Gerasimenko, Kharkiv National University of Radio Electronics

Assistant

Department of Systems Engineering

Viktoriia Shvedun, National University of Civil Defence of Ukraine

Doctor of Science in Public Administration, Professor, Head of Scientific Department

Scientific Department of Management Problems in the Field of Civil Protection

References

  1. Dearborn, D. P. S., Miller, P. L. (2014). Defending Against Asteroids and Comets. Handbook of Cosmic Hazards and Planetary Defense, 1–18. doi: https://doi.org/10.1007/978-3-319-02847-7_59-1
  2. Mykhailova, L., Savanevych, V., Sokovikova, N., Bezkrovniy, M., Khlamov, S., Pogorelov, A. (2014). Method of maximum likelihood estimation of compact group objects location on CCD-frame. Eastern-European Journal of Enterprise Technologies, 5 (4 (71)), 16–22. doi: https://doi.org/10.15587/1729-4061.2014.28028
  3. Savanevych, V. E., Khlamov, S. V., Akhmetov, V. S., Briukhovetskyi, A. B., Vlasenko, V. P., Dikov, E. N. et al. (2022). CoLiTecVS software for the automated reduction of photometric observations in CCD-frames. Astronomy and Computing, 40, 100605. doi: https://doi.org/10.1016/j.ascom.2022.100605
  4. Vavilova, I., Pakuliak, L., Babyk, I., Elyiv, A., Dobrycheva, D., Melnyk, O. (2020). Surveys, Catalogues, Databases, and Archives of Astronomical Data. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 57–102. doi: https://doi.org/10.1016/b978-0-12-819154-5.00015-1
  5. Cavuoti, S., Brescia, M., Longo, G. (2012). Data mining and knowledge discovery resources for astronomy in the web 2.0 age. Software and Cyberinfrastructure for Astronomy II. doi: https://doi.org/10.1117/12.925321
  6. Chalyi, S., Levykin, I., Biziuk, A., Vovk, A., Bogatov, I. (2020). Development of the technology for changing the sequence of access to shared resources of business processes for process management support. Eastern-European Journal of Enterprise Technologies, 2 (3 (104)), 22–29. doi: https://doi.org/10.15587/1729-4061.2020.198527
  7. Khlamov, S., Savanevych, V. (2020). Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 331–345. doi: https://doi.org/10.1016/b978-0-12-819154-5.00030-8
  8. Troianskyi, V., Kankiewicz, P., Oszkiewicz, D. (2023). Dynamical evolution of basaltic asteroids outside the Vesta family in the inner main belt. Astronomy & Astrophysics, 672, A97. doi: https://doi.org/10.1051/0004-6361/202245678
  9. Akhmetov, V., Khlamov, S., Savanevych, V., Dikov, E. (2019). Cloud Computing Analysis of Indian ASAT Test on March 27, 2019. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). doi: https://doi.org/10.1109/picst47496.2019.9061243
  10. Oszkiewicz, D., Troianskyi, V., Galád, A., Hanuš, J., Ďurech, J., Wilawer, E. et al. (2023). Spins and shapes of basaltic asteroids and the missing mantle problem. Icarus, 397, 115520. doi: https://doi.org/10.1016/j.icarus.2023.115520
  11. Smith, G. E. (2010). Nobel Lecture: The invention and early history of the CCD. Reviews of Modern Physics, 82 (3), 2307–2312. doi: https://doi.org/10.1103/revmodphys.82.2307
  12. Savanevych, V., Khlamov, S., Vlasenko, V., Deineko, Z., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Formation of a typical form of an object image in a series of digital frames. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 51–59. doi: https://doi.org/10.15587/1729-4061.2022.266988
  13. Klette, R. (2014). Concise Computer Vision. An Introduction into Theory and Algorithms. Springer, 429. doi: https://doi.org/10.1007/978-1-4471-6320-6
  14. Savanevych, V., Khlamov, S., Briukhovetskyi, O., Trunova, T., Tabakova, I. (2023). Mathematical Methods for an Accurate Navigation of the Robotic Telescopes. Mathematics, 11 (10), 2246. doi: https://doi.org/10.3390/math11102246
  15. Kuz'min, S. Z. (2000). Tsifrovaya radiolokatsiya. Vvedenie v teoriyu. Kyiv: Izdatel'stvo KvіTs, 428.
  16. Savanevych, V., Akhmetov, V., Khlamov, S., Dikov, E., Briukhovetskyi, A., Vlasenko, V. et al. (2019). Selection of the Reference Stars for Astrometric Reduction of CCD-Frames. Advances in Intelligent Systems and Computing, 881–895. doi: https://doi.org/10.1007/978-3-030-33695-0_57
  17. Khlamov, S., Tabakova, I., Trunova, T. (2022). Recognition of the astronomical images using the Sobel filter. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). doi: https://doi.org/10.1109/iwssip55020.2022.9854425
  18. Belov, L. A. (2021). Radioelektronika. Formirovanie stabil'nykh chastot i signalov. Moscow: Izdatel'stvo Yurayt, 268.
  19. Lösler, M., Eschelbach, C., Riepl, S. (2018). A modified approach for automated reference point determination of SLR and VLBI telescopes. Tm - Technisches Messen, 85 (10), 616–626. doi: https://doi.org/10.1515/teme-2018-0053
  20. Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., Terzopoulos, D. (2021). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: https://doi.org/10.1109/tpami.2021.3059968
  21. Akhmetov, V., Khlamov, S., Tabakova, I., Hernandez, W., Nieto Hipolito, J. I., Fedorov, P. (2019). New approach for pixelization of big astronomical data for machine vision purpose. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). doi: https://doi.org/10.1109/isie.2019.8781270
  22. Hampson, K. M., Gooding, D., Cole, R., Booth, M. J. (2019). High precision automated alignment procedure for two-mirror telescopes. Applied Optics, 58 (27), 7388. doi: https://doi.org/10.1364/ao.58.007388
  23. Parimucha, Š., Savanevych, V. E., Briukhovetskyi, O. B., Khlamov, S. V., Pohorelov, A. V., Vlasenko, V. P. et al. (2019). CoLiTecVS - A new tool for an automated reduction of photometric observations. Contributions of the Astronomical Observatory Skalnate Pleso, 49 (2), 151–153.
  24. Khlamov, S., Vlasenko, V., Savanevych, V., Briukhovetskyi, O., Trunova, T., Chelombitko, V., Tabakova, I. (2022). Development of computational method for matched filtration with analytical profile of the blurred digital image. Eastern-European Journal of Enterprise Technologies, 5 (4 (119)), 24–32. doi: https://doi.org/10.15587/1729-4061.2022.265309
  25. Politsch, C. A., Cisewski-Kehe, J., Croft, R. A. C., Wasserman, L. (2020). Trend filtering – I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy. Monthly Notices of the Royal Astronomical Society, 492 (3), 4005–4018. doi: https://doi.org/10.1093/mnras/staa106
  26. Burger, W., Burge, M. J. (2009). Principles of Digital Image Processing. Springer, 332. doi: https://doi.org/10.1007/978-1-84800-195-4
  27. Kashuba, S., Tsvetkov, M., Bazyey, N., Isaeva, E., Golovnia, V. (2018). The Simeiz plate collection of the ODESSA astronomical observatory. 11th Bulgarian-Serbian Astronomical Conference, 207–216. Available at: https://astro.bas.bg/XIBSAC/Proceedings/Proceedings_11BSAC.pdf
  28. Li, T., DePoy, D. L., Marshall, J. L., Nagasawa, D. Q., Carona, D. W., Boada, S. (2014). Monitoring the atmospheric throughput at Cerro Tololo Inter-American Observatory with aTmCam. Ground-Based and Airborne Instrumentation for Astronomy V. doi: https://doi.org/10.1117/12.2055167
  29. Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., Zacharias, M. I. (2013). The fourth us naval observatory CCD astrograph catalog (UCAC4). The Astronomical Journal, 145 (2), 44. doi: https://doi.org/10.1088/0004-6256/145/2/44
  30. Lemur software. CoLiTec project. Available at: https://www.colitec.space
  31. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Data Mining of the Astronomical Images by the CoLiTec Software. CEUR Workshop Proceedings, 3171, 1043–1055. Available at: https://ceur-ws.org/Vol-3171/paper75.pdf
  32. Ping, Y., Zhang, C., Lu, C. (2018). The Representation of OTA Images’ Astrometric Results with WCS-SIP Coefficientstwo. Chinese Astronomy and Astrophysics, 42 (2), 267–278. doi: https://doi.org/10.1016/j.chinastron.2018.04.006
  33. Akhmetov, V., Khlamov, S., Khramtsov, V., Dmytrenko, A. (2019). Astrometric Reduction of the Wide-Field Images. Advances in Intelligent Systems and Computing, 896–909. doi: https://doi.org/10.1007/978-3-030-33695-0_58
  34. Sergienko, A. B. (2011). Tsifrovaya obrabotka signalov. Sankt-Peterburg, 768.
  35. Fischer, G. (1976). Complex Analytic Geometry. Lecture Notes in Mathematics. Springer, 206. doi: https://doi.org/10.1007/bfb0080338
  36. Legault, T. (2014). Astrophotography. Rocky Nook, Inc.
  37. Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. Moscow: FIZMATLI, 816.
  38. Shvedun, V. O., Khlamov, S. V. (2016). Statistical modelling for determination of perspective number of advertising legislation violations. Actual Problems of Economics, 184 (10), 389–396.
  39. Zhang, Y., Zhao, Y., Cui, C. (2002). Data mining and knowledge discovery in database of astronomy. Progress in Astronomy, 20 (4), 312–323.
  40. Steger, C., Ulrich, M., Wiedemann, C. (2018). Machine vision algorithms and applications. John Wiley & Sons, 516.
  41. Рetrychenko, A., Levykin, I., Iuriev, I. (2021). Improving a method for selecting information technology services. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 32–43. doi: https://doi.org/10.15587/1729-4061.2021.229983
Improving the accuracy of identifying objects in digital frames using a procedure of full identification of measurements

Downloads

Published

2023-10-31

How to Cite

Khlamov, S., Savanevych, V., Vlasenko, V., Trunova, T., Troianskyi, V., Gerasimenko, R., & Shvedun, V. (2023). Improving the accuracy of identifying objects in digital frames using a procedure of full identification of measurements. Eastern-European Journal of Enterprise Technologies, 5(2 (125), 34–41. https://doi.org/10.15587/1729-4061.2023.288940