Power supply via fiber-optical conductor for sensors of mine working monitoring system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289775

Keywords:

power source, optical fiber, photovoltaics, photoelectric effect, light wave, energy transfer

Abstract

The article describes a system of power transmission via fiber-optic cable, which allows the supply of power to sensors and other electronic devices of ultra-low power located in places of mining workings, for which the mandatory requirement is fire safety. The developed system will allow to replace the application of copper conductors. The result of this research is the developed laboratory bench that allows measuring the current and voltage parameters in the photodetector branch. The equivalent generator method has been used, as well as the known circuit laws with two dedicated nodes for an active two-terminal network. When analyzing the literature, the existing scientific achievements, and discoveries in the field of research, an own concept of research has been formed that is different from foreign analogs. During the experiment, the studies have been performed when the photodetector was in the short circuit, idle mode, and connected to a high-resistance load. Based on the results obtained, current-voltage characteristics (CVC) and histograms have been built using a radiation source (laser) with a power of 10 and 30 mW. The parameters and technical characteristics of the irradiated silicon crystal and the radiation source have been given. The obtained electrical power has been determined using the known laws of electrical engineering, including the Ohm law. To process the experimental data, there has been used quadratic interpolation of the function, the results of the root-mean-square approximation, and there has been carried out the regression analysis. Absolute and relative errors have been calculated. The Student coefficient has been determined with a confidence interval of 0.95. Based on the results of the study, the efficiency of the power transmission system has been determined

Author Biographies

Ali Mekhtiyev, S.Seifullin Kazakh Agro Technical Research University

Candidate of Technical Sciences, Associate Professor

Department of Electrical Equipment Operation

Pavel Dunayev, S.Seifullin Kazakh Agro Technical Research University

PhD, Acting Associate Professor, Head of Department

Department of Radio Engineering, Electronics and Telecommunications

Yelena Neshina, Saginov Technical University

Candidate of Technical Sciences, Head of Department

Department of Power Systems

Aliya Alkina, Saginov Technical University

Master of Technical Sciences, Senior Lecturer

Department of Power Systems

Raushan Aimagambetova, Republic State Enterprise on the Right of Economical Jurisdiction «Kazakhstan Institute of Standardization and Metrology» of the Committee of Technical Regulation and Metrology of the Ministry of Trade and Integration of the Republic of Kazakhstan

Master of Technical Sciences, Chief Specialist

Department of Strategic Development and Science

Gabit Mukhambetov, Republic State Enterprise on the Right of Economical Jurisdiction «Kazakhstan Institute of Standardization and Metrology» of the Committee of Technical Regulation and Metrology of the Ministry of Trade and Integration of the Republic of Kazakhstan

Doctor of Economic Sciences

General Director

Lalita Kirichenko, Astana IT University

Doctoral Student

Research and Innovation Center "Industry 4.0"

Ilyas Kazambayev, Astana IT University

Doctoral Student

Research and Innovation Center "Industry 4.0"

References

  1. Fafard, S., Masson, D., Werthen, J.-G., Liu, J., Wu, T.-C., Hundsberger, C. et al. (2021). Power and Spectral Range Characteristics for Optical Power Converters. Energies, 14 (15), 4395. doi: https://doi.org/10.3390/en14154395
  2. Helmers, H., Armbruster, C., von Ravenstein, M., Derix, D., Schoner, C. (2020). 6-W Optical Power Link With Integrated Optical Data Transmission. IEEE Transactions on Power Electronics, 35 (8), 7904–7909. doi: https://doi.org/10.1109/tpel.2020.2967475
  3. Haid, M., Armbruster, C., Derix, D., Schöner, C., Helmers, H. (2019). 5 W Optical Power Link with Generic Voltage Output and Modulated Data Signal. 1st Optical Wireless and Fiber Power Transmission Conference. Yokohama. Available at: https://www.researchgate.net/publication/332671391_5_W_Optical_Power_Link_with_Generic_Voltage_Output_and_Modulated_Data_Signal
  4. Wilkins, M. M., Ishigaki, M., Provost, P.-O., Masson, D., Fafard, S., Valdivia, C. E. et al. (2019). Ripple-Free Boost-Mode Power Supply Using Photonic Power Conversion. IEEE Transactions on Power Electronics, 34 (2), 1054–1064. doi: https://doi.org/10.1109/tpel.2018.2843158
  5. Fafard, S., York, M. C. A., Proulx, F., Valdivia, C. E., Wilkins, M. M., Arès, R. et al. (2016). Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Applied Physics Letters, 108 (7). doi: https://doi.org/10.1063/1.4941240
  6. Beattie, M. N., Valdivia, C. E., Wilkins, M. M., Zamiri, M., Kaller, K. L. C., Tam, M. C. et al. (2021). High current density tunnel diodes for multi-junction photovoltaic devices on InP substrates. Applied Physics Letters, 118 (6). doi: https://doi.org/10.1063/5.0036053
  7. Wagner, L., Reichmuth, S. K., Philipps, S. P., Oliva, E., Bett, A. W., Helmers, H. (2020). Integrated series/parallel connection for photovoltaic laser power converters with optimized current matching. Progress in Photovoltaics: Research and Applications, 29 (2), 172–180. doi: https://doi.org/10.1002/pip.3353
  8. Komuro, Y., Honda, S., Kurooka, K., Warigaya, R., Tanaka, F., Uchida, S. (2021). A 43.0% efficient GaInP photonic power converter with a distributed Bragg reflector under high-power 638 nm laser irradiation of 17 W cm−2. Applied Physics Express, 14 (5), 052002. doi: https://doi.org/10.35848/1882-0786/abf31c
  9. Panchak, A., Khvostikov, V., Pokrovskiy, P. (2021). AlGaAs gradient waveguides for vertical p/n junction GaAs laser power converters. Optics & Laser Technology, 136, 106735. doi: https://doi.org/10.1016/j.optlastec.2020.106735
  10. Zhao, Y., Li, S., Ren, H., Li, S., Han, P. (2021). Energy band adjustment of 808 nm GaAs laser power converters via gradient doping. Journal of Semiconductors, 42 (3), 032701. doi: https://doi.org/10.1088/1674-4926/42/3/032701
  11. Nouri, N., Valdivia, C. E., Beattie, M. N., Zamiri, M. S., Krich, J. J., Hinzer, K. (2021). Ultrathin monochromatic photonic power converters with nanostructured back mirror for light trapping of 1310-nm laser illumination. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices X. doi: https://doi.org/10.1117/12.2584689
  12. Ishigaki, M., Fafard, S., Masson, D. P., Wilkins, M. M., Valdivia, C. E., Hinzer, K. (2017). A new optically-isolated power converter for 12 V gate drive power supplies applied to high voltage and high speed switching devices. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). doi: https://doi.org/10.1109/apec.2017.7931022
  13. Fafard, S., York, M. C. A., Proulx, F., Wilkins, M., Valdivia, C. E., Bajcsy, M. et al. (2016). Ultra-efficient N-junction photovoltaic cells with VOC > 14V at high optical input powers. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). doi: https://doi.org/10.1109/pvsc.2016.7750065
  14. Fafard, S., Proulx, F., York, M. C. A., Richard, L. S., Provost, P. O., Arès, R. et al. (2016). High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Applied Physics Letters, 109 (13). doi: https://doi.org/10.1063/1.4964120
  15. Helmers, H., Lopez, E., Höhn, O., Lackner, D., Schön, J., Schauerte, M. et al. (2021). 68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Physica Status Solidi (RRL) – Rapid Research Letters, 15 (7). doi: https://doi.org/10.1002/pssr.202100113
  16. Umezawa, T., Dat, P. T., Kashima, K., Kanno, A., Yamamoto, N., Kawanishi, T. (2018). 100-GHz Radio and Power Over Fiber Transmission Through Multicore Fiber Using Optical-to-Radio Converter. Journal of Lightwave Technology, 36 (2), 617–623. doi: https://doi.org/10.1109/jlt.2017.2731991
  17. Fakidis, J., Videv, S., Helmers, H., Haas, H. (2018). 0.5-Gb/s OFDM-Based Laser Data and Power Transfer Using a GaAs Photovoltaic Cell. IEEE Photonics Technology Letters, 30 (9), 841–844. doi: https://doi.org/10.1109/lpt.2018.2815273
  18. Yamagata, Y., Yamada, Y., Kaifuchi, Y., Nogawa, R., Morohashi, R., Yamaguchi, M. (2015). Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD). doi: https://doi.org/10.1109/hpd.2015.7439668
  19. Mekhtiyev, А. D., Kovtun, A. A., Yugay, V. V., Neshina, E. G., Aimagambetova, R. Z. Alkina, A. D. (2021). Research of mechanical stress at tension of quartz optical fiber (QOF). Metalurgija, 60 (1-2), 121–124. Available at: https://hrcak.srce.hr/246106
  20. Mekhtiyev, А. D., Soldatov, A. I., Neshina, Y. G., Alkina, A. D., Madi, P. Sh. (2021). The working roof rock massif displacement control system. Series of geology and technical sciences, 5 (449), 68–76. doi: https://doi.org/10.32014/2021.2518-170x.100
  21. Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. doi: https://doi.org/10.15587/1729-4061.2021.229033
  22. Shareef, I. R., Hussein, H. K. (2021). Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 44–53. doi: https://doi.org/10.15587/1729-4061.2021.224137
  23. Tranzistory otechestvennye bol'shoy moschnosti nizkochastotnye KT 800-819. Available at: http://electronic.com.ua/spravochniki/Tranzistorq_otehestvennqe/Tranzistorq_otehestvennqe_bol%60woy_moschnosti_nizkohastotnqe_KT_800-819.htm
  24. Yurchenko, A. V., Mekhtiev, A. D., Al'kina, A. D. (2017). Puti povysheniya effektivnosti solnechnyh elektrostancij. Karaganda: Izd-vo KarGTU, 181.
  25. Al-Abdaly, N. M., Al-Taai, S. R., Imran, H., Ibrahim, M. (2021). Development of prediction model of steel fiber-reinforced concrete compressive strength using random forest algorithm combined with hyperparameter tuning and k-fold cross-validation. Eastern-European Journal of Enterprise Technologies, 5 (7 (113)), 59–65. doi: https://doi.org/10.15587/1729-4061.2021.242986
  26. Gubarevych, O., Goolak, S., Daki, O., Yakusevych, Y. (2021). Determining an additional diagnostic parameter for improving the accuracy of assessment of the condition of stator windings in an induction motor. Eastern-European Journal of Enterprise Technologies, 5 (5 (113)), 21–29. doi: https://doi.org/10.15587/1729-4061.2021.239509
  27. Chenchevoi, V., Kuznetsov, V., Kuznetsov, V., Chencheva, O., Zachepa, I., Chornyi, O. et al. (2021). Development of mathematical models of energy conversion processes in an induction motor supplied from an autonomous induction generator with parametric non-symmetry. Eastern-European Journal of Enterprise Technologies, 4 (8 (112)), 67–82. doi: https://doi.org/10.15587/1729-4061.2021.239146
Power supply via fiber-optical conductor for sensors of mine working monitoring system

Downloads

Published

2023-10-31

How to Cite

Mekhtiyev, A., Dunayev, P., Neshina, Y., Alkina, A., Aimagambetova, R., Mukhambetov, G., Kirichenko, L., & Kazambayev, I. (2023). Power supply via fiber-optical conductor for sensors of mine working monitoring system. Eastern-European Journal of Enterprise Technologies, 5(5 (125), 15–23. https://doi.org/10.15587/1729-4061.2023.289775

Issue

Section

Applied physics