Devising a procedure for the brightness alignment of astronomical frames background by a high frequency filtration to improve accuracy of the brightness estimation of objects
DOI:
https://doi.org/10.15587/1729-4061.2024.301327Keywords:
brightness equalization, high-pass filtering, ideal filter, Butterworth filter, Gaussian filterAbstract
The object of this study is the background substrate of astronomical frames. To detect and compare the image of an object in a frame with its real image from astronomical catalogs, it is necessary to uniformly distribute the brightness of the background image substrate. Most often, the background alignment of astronomical frames is performed using the hardware calibration method applying the construction of service frames. However, it does not make it possible to eliminate the background from temporary stray light. Therefore, to solve this problem, a procedure has been proposed for brightness alignment of the background frame using high-pass filtering.
For high-pass filtering of images, three high-pass filters were considered – an ideal filter, a Butterworth filter, and a Gaussian filter. To remove coarse-grained image components from the image, a high-pass filter was used, which attenuates low-frequency harmonics of the image spectrum while simultaneously passing high-frequency harmonics.
Applying the devised procedure for brightness alignment of the background substrate of the frame has made it possible to increase the signal-to-noise ratio and reduce the dynamic range of the background substrate of the image. The study showed that when assessing brightness and identifying frames, the fitting provides better accuracy of reference to the starry sky. Also, the standard deviation of frame identification errors in this case is 5–7 times less than without using the devised procedure.
The devised procedure for brightness alignment of the background frame substrate was tested in practice within the framework of the CoLiTec project. It was implemented at the stage of intra-frame processing in the Lemur software for automated detection of new objects and tracking of known objects
References
- Wheeler, L., Dotson, J., Aftosmis, M., Coates, A., Chomette, G., Mathias, D. (2024). Risk assessment for asteroid impact threat scenarios. Acta Astronautica, 216, 468–487. https://doi.org/10.1016/j.actaastro.2023.12.049
- Khlamov, S. V., Savanevych, V. E., Briukhovetskyi, O. B., Pohorelov, A. V. (2016). CoLiTec software - detection of the near-zero apparent motion. Proceedings of the International Astronomical Union, 12 (S325), 349–352. https://doi.org/10.1017/s1743921316012539
- Savanevych, V. E., Khlamov, S. V., Akhmetov, V. S., Briukhovetskyi, A. B., Vlasenko, V. P., Dikov, E. N. et al. (2022). CoLiTecVS software for the automated reduction of photometric observations in CCD-frames. Astronomy and Computing, 40, 100605. https://doi.org/10.1016/j.ascom.2022.100605
- Hu, Z., Bodyanskiy, Y. V., Tyshchenko, O. K., Tkachov, V. M. (2017). Fuzzy Clustering Data Arrays with Omitted Observations. International Journal of Intelligent Systems and Applications, 9 (6), 24–32. https://doi.org/10.5815/ijisa.2017.06.03
- Vavilova, I., Pakuliak, L., Babyk, I., Elyiv, A., Dobrycheva, D., Melnyk, O. (2020). Surveys, Catalogues, Databases, and Archives of Astronomical Data. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 57–102. https://doi.org/10.1016/b978-0-12-819154-5.00015-1
- Zhang, Y., Zhao, Y., Cui, C. (2002). Data mining and knowledge discovery in database of astronomy. Progress in Astronomy, 20 (4), 312–323.
- Chalyi, S., Levykin, I., Biziuk, A., Vovk, A., Bogatov, I. (2020). Development of the technology for changing the sequence of access to shared resources of business processes for process management support. Eastern-European Journal of Enterprise Technologies, 2 (3 (104)), 22–29. https://doi.org/10.15587/1729-4061.2020.198527
- Khlamov, S., Savanevych, V., Tabakova, I., Trunova, T. (2022). The astronomical object recognition and its near-zero motion detection in series of images by in situ modeling. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). https://doi.org/10.1109/iwssip55020.2022.9854475
- Troianskyi, V., Kankiewicz, P., Oszkiewicz, D. (2023). Dynamical evolution of basaltic asteroids outside the Vesta family in the inner main belt. Astronomy & Astrophysics, 672, A97. https://doi.org/10.1051/0004-6361/202245678
- Akhmetov, V., Khlamov, S., Savanevych, V., Dikov, E. (2019). Cloud Computing Analysis of Indian ASAT Test on March 27, 2019. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). https://doi.org/10.1109/picst47496.2019.9061243
- Oszkiewicz, D., Troianskyi, V., Galád, A., Hanuš, J., Ďurech, J., Wilawer, E. et al. (2023). Spins and shapes of basaltic asteroids and the missing mantle problem. Icarus, 397, 115520. https://doi.org/10.1016/j.icarus.2023.115520
- Savanevych, V., Khlamov, S., Briukhovetskyi, O., Trunova, T., Tabakova, I. (2023). Mathematical Methods for an Accurate Navigation of the Robotic Telescopes. Mathematics, 11 (10), 2246. https://doi.org/10.3390/math11102246
- Bellanger, M. (2024). Digital Signal Processing. John Wiley & Sons. https://doi.org/10.1002/9781394182695
- Adam, G. K., Kontaxis, P. A., Doulos, L. T., Madias, E.-N. D., Bouroussis, C. A., Topalis, F. V. (2019). Embedded Microcontroller with a CCD Camera as a Digital Lighting Control System. Electronics, 8 (1), 33. https://doi.org/10.3390/electronics8010033
- Savanevych, V., Khlamov, S., Vlasenko, V., Deineko, Z., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Formation of a typical form of an object image in a series of digital frames. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 51–59. https://doi.org/10.15587/1729-4061.2022.266988
- Klette, R. (2014). Concise Computer Vision. An Introduction into Theory and Algorithms. Springer London, 429. https://doi.org/10.1007/978-1-4471-6320-6
- Khlamov, S., Tabakova, I., Trunova, T. (2022). Recognition of the astronomical images using the Sobel filter. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). https://doi.org/10.1109/iwssip55020.2022.9854425
- Dhanalakshmi, R., Bhavani, N. P. G., Raju, S. S., Shaker Reddy, P. C., Mavaluru, D., Singh, D. P., Batu, A. (2022). Onboard Pointing Error Detection and Estimation of Observation Satellite Data Using Extended Kalman Filter. Computational Intelligence and Neuroscience, 2022, 1–8. https://doi.org/10.1155/2022/4340897
- Savanevych, V., Akhmetov, V., Khlamov, S., Dikov, E., Briukhovetskyi, A., Vlasenko, V. et al. (2019). Selection of the Reference Stars for Astrometric Reduction of CCD-Frames. Advances in Intelligent Systems and Computing, 881–895. https://doi.org/10.1007/978-3-030-33695-0_57
- Lösler, M., Eschelbach, C., Riepl, S. (2018). A modified approach for automated reference point determination of SLR and VLBI telescopes. Tm - Technisches Messen, 85 (10), 616–626. https://doi.org/10.1515/teme-2018-0053
- Shan, W., Yi, Y., Qiu, J., Yin, A. (2019). Robust Median Filtering Forensics Using Image Deblocking and Filtered Residual Fusion. IEEE Access, 7, 17174–17183. https://doi.org/10.1109/access.2019.2894981
- Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., Terzopoulos, D. (2021). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2021.3059968
- Dadkhah, M., Lyashenko, V. V., Deineko, Z. V., Shamshirband, S., Jazi, M. D. (2019). Methodology of wavelet analysis in research of dynamics of phishing attacks. International Journal of Advanced Intelligence Paradigms, 12 (3/4), 220. https://doi.org/10.1504/ijaip.2019.098561
- Kirichenko, L., Saif, A., Radivilova, T. (2020). Generalized Approach to Analysis of Multifractal Properties from Short Time Series. International Journal of Advanced Computer Science and Applications, 11 (5). https://doi.org/10.14569/ijacsa.2020.0110527
- Hampson, K. M., Gooding, D., Cole, R., Booth, M. J. (2019). High precision automated alignment procedure for two-mirror telescopes. Applied Optics, 58 (27), 7388. https://doi.org/10.1364/ao.58.007388
- Kudzej, I., Savanevych, V. E., Briukhovetskyi, O. B., Khlamov, S. V., Pohorelov, A. V., Vlasenko, V. P. et al. (2019). CoLiTecVS – A new tool for the automated reduction of photometric observations. Astronomische Nachrichten, 340 (1-3), 68–70. https://doi.org/10.1002/asna.201913562
- Khlamov, S., Vlasenko, V., Savanevych, V., Briukhovetskyi, O., Trunova, T., Chelombitko, V., Tabakova, I. (2022). Development of computational method for matched filtration with analytical profile of the blurred digital image. Eastern-European Journal of Enterprise Technologies, 5 (4 (119)), 24–32. https://doi.org/10.15587/1729-4061.2022.265309
- Khlamov, S., Savanevych, V., Vlasenko, V., Briukhovetskyi, O., Trunova, T., Levykin, I. et al. (2023). Development of the matched filtration of a blurred digital image using its typical form. Eastern-European Journal of Enterprise Technologies, 1(9 (121)), 62–71. https://doi.org/10.15587/1729-4061.2023.273674
- Burger, W., Burge, M. J. (2022). Digital Image Processing. An Algorithmic Introduction. Springer Cham, 945. https://doi.org/10.1007/978-3-031-05744-1
- Bodyanskiy, Y., Popov, S., Brodetskyi, F., Chala, O. (2022). Adaptive Least-Squares Support Vector Machine and its Combined Learning-Selflearning in Image Recognition Task. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). https://doi.org/10.1109/csit56902.2022.10000518
- Troianskyi, V., Kashuba, V., Bazyey, O., Okhotko, H., Savanevych, V., Khlamov, S., Briukhovetskyi, A. (2023). First reported observation of asteroids 2017 AB8, 2017 QX33, and 2017 RV12. Contributions of the Astronomical Observatory Skalnaté Pleso, 53 (2). https://doi.org/10.31577/caosp.2023.53.2.5
- Li, T., DePoy, D. L., Marshall, J. L., Nagasawa, D. Q., Carona, D. W., Boada, S. (2014). Monitoring the atmospheric throughput at Cerro Tololo Inter-American Observatory with aTmCam. Ground-Based and Airborne Instrumentation for Astronomy V. https://doi.org/10.1117/12.2055167
- Luo, X., Gu, S., Xiang, Y., Wang, X., Yeung, B., Ng, E. et al. (2022). Active longitudes and starspot evolution of the young rapidly rotating star USNO-B1.0 1388−0463685 discovered in the Yunnan–Hong Kong survey. Monthly Notices of the Royal Astronomical Society, 514 (1), 1511–1521. https://doi.org/10.1093/mnras/stac1406
- Lemur software. CoLiTec. Available at: https://colitec.space/
- Khlamov, S., Savanevych, V., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Data Mining of the Astronomical Images by the CoLiTec Software. CEUR Workshop Proceedings, 3171, 1043–1055. Available at: https://ceur-ws.org/Vol-3171/paper75.pdf
- Dougherty, E. R. (2020). Digital Image Processing Methods. CRC Press, 504. https://doi.org/10.1201/9781003067054
- Gonzalez, R., Woods, R. (2018). Digital image processing. Pearson. Available at: https://dl.icdst.org/pdfs/files4/01c56e081202b62bd7d3b4f8545775fb.pdf
- Shvedun, V. O., Khlamov, S. V. (2016). Statistical modeling for determination of perspective number of advertising legislation violations. Actual Problems of Economics, 184 (10), 389–396.
- Perova, I., Brazhnykova, Y., Miroshnychenko, N., Bodyanskiy, Y. (2020). Information Technology for Medical Data Stream Mining. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). https://doi.org/10.1109/tcset49122.2020.235399
- Steger, C., Ulrich, M., Wiedemann, C. (2018). Machine vision algorithms and applications. John Wiley & Sons, 516.
- Khlamov, S., Tabakova, I., Trunova, T., Deineko, Z. (2022). Machine Vision for Astronomical Images Using the Canny Edge Detector. CEUR Workshop Proceedings, 3384, 1–10.
- Ruban, I., Martovytskyi, V., Lukova-Chuiko, N. (2016). Designing a monitoring model for cluster super–computers. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 32–37. https://doi.org/10.15587/1729-4061.2016.85433
- Buslov, P., Shvedun, V., Streltsov, V. (2018). Modern Tendencies of Data Protection in the Corporate Systems of Information Consolidation. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). https://doi.org/10.1109/infocommst.2018.8632089
- Cavuoti, S., Brescia, M., Longo, G. (2012). Data mining and knowledge discovery resources for astronomy in the web 2.0 age. Software and Cyberinfrastructure for Astronomy II. https://doi.org/10.1117/12.925321
- Рetrychenko, A., Levykin, I., Iuriev, I. (2021). Improving a method for selecting information technology services. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 32–43. https://doi.org/10.15587/1729-4061.2021.229983
- Grebennik, I., Chorna, O., Urniaieva, I. (2022). Distribution of Permutations with Different Cyclic Structure in Mathematical Models of Transportation Problems. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). https://doi.org/10.1109/acit54803.2022.9913183
- Baranova, V., Zeleniy, O., Deineko, Z., Bielcheva, G., Lyashenko, V. (2019). Wavelet Coherence as a Tool for Studying of Economic Dynamics in Infocommunication Systems. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). https://doi.org/10.1109/picst47496.2019.9061301
- Dombrovska, S., Shvedun, V., Streltsov, V., Husarov, K. (2018). The prospects of integration of the advertising market of Ukraine into the global advertising business. Problems and Perspectives in Management, 16 (2), 321–330. https://doi.org/10.21511/ppm.16(2).2018.29
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vladimir Vlasenko, Sergii Khlamov, Vadym Savanevych
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.