Development of energy efficient methodology of carbon materials drying and fragmentation

Authors

  • Владимир Александрович Кутовой National Scientific Center “Kharkov Institute of Physics and Technology” National Academy of Sciences in Ukraine 1, Akademicheskaya Street, Kharkov, 61108, Ukraine, Ukraine
  • Иосиф Степанович Мысак National University “Lvov Polytechnic” 12, Stepana Bandery Street, Lvov, 79013, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.30398

Keywords:

thermal vacuum installation, brown coal, ecology, energy saving, drying, fragmentation, pressure, sulfur

Abstract

The development of heat power engineering in the modern conditions requires high-quality fuel with low sulfur content. Unlike liquid and gaseous fuels, brown coal has a high ash content and humidity. In order to improve the efficiency of thermal power plants, it is necessary to modernize the brown coal preparation process to lower sulfur content and reduce harmful emissions into the atmosphere during combustion. Therefore, the development and introduction of new energy-saving heat technological installations for drying and fragmentation of carbon materials is an important scientific-technical problem which is solved in the framework of the scientific area - industrial heat power engineering.

In the paper, new energy-saving methodology, allowing highly efficient continuous drying and simultaneous fragmentation of dispersed materials was developed at the newly created highly productive thermal vacuum installation.

During the research on thermal vacuum drying of dispersed materials, analytical and experimental methods for determining moisture withdrawal from the investigated objects depending on the regime parameters of the thermal vacuum installation were used.

Based on the results of scientific and technical research it was found that brown coal with the initial humidity of 40% and size of up to 8 mm is converted into a fine powder with a humidity of less than 1.0% for 14 seconds during drying in the thermal vacuum installation. The temperature of the dried brown coal at the heating element outlet did not exceed 76οC at the heater temperature of 250oC. Brown coal drying proceeds uniformly, the color changes from brown to black. This suggests that the sulfur content in the brown coal reduces. In our case, the sulfur amount in the dried brown coal has decreased by more than twice from 4.8% to 2.2%.

The developed process of thermal vacuum drying and simultaneous fragmentation of brown coal allows to reduce energy costs per unit of the dried product, accelerate the drying process, obtain a fine powder of the dried coal with low sulfur content, which leads to reducing harmful emissions into the environment during combustion.

Author Biographies

Владимир Александрович Кутовой, National Scientific Center “Kharkov Institute of Physics and Technology” National Academy of Sciences in Ukraine 1, Akademicheskaya Street, Kharkov, 61108, Ukraine

PhD, Physical-Mathematical Sciences, Senior Scientific Officer

Иосиф Степанович Мысак, National University “Lvov Polytechnic” 12, Stepana Bandery Street, Lvov, 79013, Ukraine

Doctor of Technical Sciences, Professor

Chair of Thermal Technology and Thermal Power Stations

References

  1. Rizun, A. R., Denisjuk, T. D., Golen', Ju. V., Kononov, V. Ju., Rachkov, A. N. (2011). Jeletrorazrjadnaja dezintegracija i desul'furacija uglja pri izgotovlenii vodno-ugol'nogo topliva. Jelektronnaja obrabotka materialov, 47 (1), 113–115.
  2. Filipenko, Ju. N., Skljar, P. T., Harlova, E. V., Judavina, E. V., Chernjavskij, N. V. (2013). Podgotovka ugol'nogo topliva dlja pylevidnogo szhiganija na teplovyh jelektrostancijah. Zbagachennja korisnih kopalin, 53 (94), 54–61.
  3. Vysockij, S. P., Mastika, Ju. S. (1193). Desul'furacija i obogashhenie uglej pered ih szhiganiem na TJeS. Jenergetika i jelektrofikacija, 3, 53–56.
  4. Babuha, G. L., Rabinovich, M. I. (1969). Mehanika i teploobmen potokov polidispersnoj gazovzvesi. Kiev: Naukova dumka, 185–186.
  5. Atamanjuk, V. M., Gumnyckyj, Ja. M. (2013). Naukovi osnovy fil'tracijnogo sushinnja dyspersnyh materialiv. Lviv: Vydavnyctvo L'vivs'koi' politehniky, 256.
  6. Brodskij, R. E., Virchenko, Ju. P. (2013). Medlennaja fragmentacija pri kvadratichnom zakone droblenija. Vestnik Hersonskogo nacional'nogo tehnicheskogo universiteta, 2 (47), 63–66.
  7. Ziff, R. M. (1992). An explicit solutions to a discrete fragmentation model. Journal of Physics A: Mathematical and General, 25 (9), 2569–2576. doi: 10.1088/0305-4470/25/9/027
  8. Kutovoj, V. A., Kazarinov, Ju. G., Lucenko, A. S., Nikolaenko, A. A., Tkachenko, V. I. (2014). Termovakuumnyj metod poluchenija nanodispersnyh materialov. Voprosy atomnoj nauki i tehniki, 103/2 (90), 153–157.
  9. Koshel'nik, V. M., Kutovoj, V. A., Kazarinov, Ju. G., Lucenko, A. S. (2013). Jenergosberegajushhaja termovakuumnaja sushka i izmel'chenija burogo uglja. Nauka tehnіka, tehnologіja, osvіta, zdorov’ja. Kharkіv, Ukraїna, 297.
  10. Kutovyj, V. O. (2007). Patent 81138 Ukrai'na. MPK F26B9/06. Prystrij dlja termovakuumnogo sushinnja. №a200507488; zajavl. 27.07.2005; opubl. 10.12.07. Bjul. № 20, 5.

Published

2014-12-15

How to Cite

Кутовой, В. А., & Мысак, И. С. (2014). Development of energy efficient methodology of carbon materials drying and fragmentation. Eastern-European Journal of Enterprise Technologies, 6(8(72), 35–40. https://doi.org/10.15587/1729-4061.2014.30398

Issue

Section

Energy-saving technologies and equipment