The single shaft GT d045 mathematical model adaptation to the optimum optimization system

Authors

  • Владимир Николаевич Чобенко Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42,a Oktyabrsky Pr., Mykolayiv, 54018, Ukraine, Ukraine https://orcid.org/0000-0001-8974-5217
  • Ирина Евгеньевна Аннопольская Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine 2/10 Dm. Pozharsky St., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-3755-5873
  • Александр Леонидович Лютиков Design - experimental performances and GTE regulation department 42,a Oktyabrsky Pr., Mykolayiv, 54018, Ukraine, Ukraine https://orcid.org/0000-0002-2335-9273
  • Анатолий Алексеевич Тарелин A. N. Podgorny Institute for Mechanical Engineering Problems of NAS of Ukraine, Ukraine https://orcid.org/0000-0001-7160-5726

DOI:

https://doi.org/10.15587/1729-4061.2014.30875

Keywords:

mathematical model, identification, GT, variable parameters, controlled parameters, objective function

Abstract

The need to identify the main controlled parameters (characteristics) of the engine, determined in experimental studies, which depend on a large number of parameters, uncontrolled during the experiment has caused the need to apply software identification tools that allow to reduce the complexity of these works.

The paper presents the results of GT D045 mathematical model adaptation to the Optimum software system for optimization and identification of parameters and characteristics of power plants, developed in IPMash NAS of Ukraine, allowing to calculate the identification criteria, parameters and characteristics of the studied object using the same equations as in the design. The choice of variable and controlled parameters, as well as the range of their changes is described. The principles of further improvement of the methodology for setting the ranges of change of variable and controlled parameters, based on direct measurements of the material part and the experience of the researcher-developer are given.

The results of solving a test identification problem demonstrate the possibility and feasibility of using the Optimum system for the identification of the mathematical model of GT D045 during its fine-tuning.

Author Biographies

Владимир Николаевич Чобенко, Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42,a Oktyabrsky Pr., Mykolayiv, 54018, Ukraine

PhD, General designer deputy - Head of design department

Ирина Евгеньевна Аннопольская, Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine 2/10 Dm. Pozharsky St., Kharkiv, Ukraine, 61046

Candidate of technical science, senior researcher

Power engineering department of general technical researching 

Александр Леонидович Лютиков, Design - experimental performances and GTE regulation department 42,a Oktyabrsky Pr., Mykolayiv, 54018, Ukraine

Design engineer II category, of calculated static performances of GTU group

Анатолий Алексеевич Тарелин, A. N. Podgorny Institute for Mechanical Engineering Problems of NAS of Ukraine

Corresponding Member of NAS of Ukraine, Doctor of Technical Sciences, Professor

References

  1. ю Annopolskaya,I.E., Antiptsev, Y. P., Parshin, V. V. (2004). Parameter identification of mathematical models of gas turbine engines on the results of tests during the design and arguments Problem engineering, 7 (3), 3–8.
  2. Kurzke J. (2012). GasTurb 12. Design and Off-Design Performance of Gas Turbines. Available at: http://www.gasturb.de/manual.html
  3. Kurzke, J. (2007). About Simplifications in Gas Turbine Performance Calculation Proceeding of ASME Turbo Expo 2007: Power for Land, Sea and Air. Montreal, Canada (GT2007- 27620), 9.
  4. GECAT (2000). Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2000-3893
  5. GSP 11 (2014). User Manual. Available at: http://www.gspteam.com
  6. Morozov, S. A. (2003). Program complex GRAD - aircraft engines gasdynamic calculations. Aerospace Technologies and Equipment: collection of reports, Conference. Kazan: KSTU, 190–196.
  7. Program complex GRAD. Available at: http://grad.kai.ru
  8. Tkachenko, A. Y., Kuzmichev, V. S., Kulagin, V. V., Krupenich, I. N., Rybakov, V. N. (2009). Automated system for gas-dynamical calculations and analysis (ASTRA-4) gas turbine engines and power units. Problems and prospects of development of engine.SamaraStateAerospaceUniversity, 2, B2, 80–82.
  9. Druginyn, L. N., Shvets, L. I., Lanshin, A. I. (1979). GTE mathematical modeling on modern computers while researching the aircraft engines parameters and performances: CIAM publications 832.Moscow: CIAM, 3–4.
  10. Tarelin, A. O., Annopolska, I E., Antiptsev, Y. P., Parshin, V. V. (2012). Information-tool system for solving optimization problems and identify the design and fine-tuning of power plants. Vistnyk NTU «KhPI», 8, 17–25.
  11. Sinkievich, M. V. (1988). Ship-based GTE research and development gas-dynamic performances method based on a highly informative mathematical model. Diss. In the competition of the academic. Mykolayiv, 214.
  12. Chobenko, V. N., Palienko, R V., Lyutikov O. L. (2013). Mathematical model of the single-shaft turbine engine D045. Eastern-European Journal of Enterprise Technologies, 3/12 (63), 18–21. Available at: http://journals.uran.ua/eejet/article/view/14872/12675

Published

2014-12-15

How to Cite

Чобенко, В. Н., Аннопольская, И. Е., Лютиков, А. Л., & Тарелин, А. А. (2014). The single shaft GT d045 mathematical model adaptation to the optimum optimization system. Eastern-European Journal of Enterprise Technologies, 6(8(72), 14–18. https://doi.org/10.15587/1729-4061.2014.30875

Issue

Section

Energy-saving technologies and equipment