Determining the efficiency of techniques for optimizing the number of tags in modern human-machine interfaces under conditions of limited resources

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.309029

Keywords:

human machine interface, tag, resource optimization, tag licensing

Abstract

The object of this study is modern Human-Machine Interfaces (HMI) and SCADA systems in the industry. The subject of research is techniques for optimizing the number of tags (variables) in the SCADA/HMI environment to enhance resource utilization efficiency.

One of the challenges in creating SCADA/HMI-based solutions can be the number of tags (variables) in the runtime environment. A large number of tags can lead to a problem of limited available resources.

The technique presented here allow for the optimization of the number of tags used in Human-Machine Interface systems built with SCADA software and operator panels in combination with Programmable Logic Controllers (PLCs).

An evaluation of the efficiency of techniques for reducing the number of HMI tags was conducted on an experimental configuration consisting of objects such as discrete input/output, analog input/output, actuators such as valves with discrete/analog control, and drives with frequency converters. The optimization coefficient, defined as the ratio of the number of input/output tags used directly to the number of tags after applying the optimization principle, was used as the efficiency criterion. Depending on the techniques and their combinations, the criterion values reached orders of 4, 10, and in one case even more than 100. These values are explained by the application of multiplexing approaches and various packing techniques.

The advantages and disadvantages of the reported techniques, as well as their application limitations, have been identified. Some techniques are suitable only for specific tasks.

These techniques could be applied in practical implementation when designing modern high-efficiency Human-Machine Interfaces under conditions of limited resources.

Author Biographies

Volodymyr Polupan, National University of Food Technologies

PhD

Department of Automation and Computer Technologies of Control Systems named after Prof. A. P. Ladanyuk

Roman Mirkevych, National University of Food Technologies

PhD

Department of Automation and Computer Technologies of Control Systems named after Prof. A. P. Ladanyuk

Oleksandr Pupena, National University of Food Technologies

PhD

Department of Automation and Computer Technologies of Control Systems named after Prof. A. P. Ladanyuk

Oleh Klymenko, National University of Food Technologies

PhD

Department of Automation and Computer Technologies of Control Systems named after Prof. A. P. Ladanyuk

Oleksii Mirkevych, National University of Food Technologies

PhD Student

Department of Automation and Computer Technologies of Control Systems named after Prof. A. P. Ladanyuk

References

  1. Pupena, O. M. (2020). Rozroblennia liudyno-mashynnykh interfeisiv ta system zbyrannia danykh z vykorystanniam prohramnykh zasobiv SCADA/HMI. Kyiv: LIRA-K, 594. Available at: https://lira-k.com.ua/preview/12760.pdf
  2. Shyshak, A., Pupena, O. (2020). Management of human-machine interface lifecycle. Scientific Works of National University of Food Technologies, 26 (3), 17–27. https://doi.org/10.24263/2225-2924-2020-26-3-4
  3. Urbas, L., Obst, M., Stöss, M. (2012). Formal Models for High Performance HMI Engineering. IFAC Proceedings Volumes, 45 (2), 854–859. https://doi.org/10.3182/20120215-3-at-3016.00151
  4. Panter, L., Leder, R., Keiser, D., Freitag, M. (2024). Requirements for Human-Machine-Interaction Applications in Production and Logistics within Industry 5.0 – A Case Study Approach. Procedia Computer Science, 232, 1164–1171. https://doi.org/10.1016/j.procs.2024.01.114
  5. Crompton, J. (2021). Data management from the DCS to the historian and HMI. Machine Learning and Data Science in the Power Generation Industry, 93–122. https://doi.org/10.1016/b978-0-12-819742-4.00005-6
  6. Šverko, M., Grbac, T. G. (2024). Automated HMI design as a custom feature in industrial SCADA systems. Procedia Computer Science, 232, 1789–1798. https://doi.org/10.1016/j.procs.2024.02.001
  7. Scaife, R. (2016). Control system interface design. Human Factors in the Chemical and Process Industries, 223–239. https://doi.org/10.1016/b978-0-12-803806-2.00013-3
  8. Mustafa, F. E., Ahmed, I., Basit, A., Alvi, U.-E.-H., Malik, S. H., Mahmood, A., Ali, P. R. (2023). A review on effective alarm management systems for industrial process control: Barriers and opportunities. International Journal of Critical Infrastructure Protection, 41, 100599. https://doi.org/10.1016/j.ijcip.2023.100599
  9. Rao, H. R. M., Zhou, B., Brown, K., Chen, T., Shah, S. L. (2024). Alarm correlation analysis with applications to industrial alarm management. Control Engineering Practice, 143, 105812. https://doi.org/10.1016/j.conengprac.2023.105812
  10. Cruz-Benito, J., García-Peñalvo, F. J., Therón, R. (2019). Analyzing the software architectures supporting HCI/HMI processes through a systematic review of the literature. Telematics and Informatics, 38, 118–132. https://doi.org/10.1016/j.tele.2018.09.006
  11. Zhou, C., Su, H., Tang, X., Cao, Y., Yang, S. (2024). Global self-optimizing control of batch processes. Journal of Process Control, 135, 103163. https://doi.org/10.1016/j.jprocont.2024.103163
  12. Pupena, O., Mirkevych, R., Klymenko, O. (2020). Praktychni rekomendatsiyi do realizatsiyi elementiv standartu IEC 61512 v prohramnomu zabezpechenni system keruvannia. TEKhNIChNYI KOMITET 185 «PROMYSLOVA AVTOMATYZATsIIa». Kyiv. Available at: https://tk185.appau.org.ua/guide/aCampus-users-guides-IEC61512+++.pdf
  13. Pupena, O., Klymenko, O., Mirkevych, R. (2020). Pryntsypy funktsionuvannia system keruvannia osnovnym vyrobnytstvom cherez pryzmu standartu IEC-62264. TEKhNIChNYI KOMITET 185 «PROMYSLOVA AVTOMATYZATsIIa». Kyiv. Available at: https://tk185.appau.org.ua/guide/aCampus-users-guides-IEC62264+++.pdf
  14. Rockwell Automation Process HMI Style Guide. White Paper. Rockwell Automation. Available at: https://literature.rockwellautomation.com/idc/groups/literature/documents/wp/proces-wp023_-en-p.pdf
  15. Best Design Practices: How to Create High Performance HMI to Enhance Operator Efficiency (2023). White Paper. Movicon.NExT. Available at: https://www.tug.at/images/news/whitepapers/Best_practices_for_high_performance_HMI_design_White_Paper_ENUS_2023-03-24.pdf
  16. PAC Framework V1. Available at: https://github.com/pupenasan/PACFramework
  17. Bhole, M., Kastner, W., Sauter, T. (2023). Knowledge Representation of Asset Information and Performance in OT Environments. 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA). https://doi.org/10.1109/etfa54631.2023.10275721
  18. Peco Chacón, A. M., García Márquez, F. P. (2019). False Alarms Management by Data Science. Data Science and Digital Business, 301–316. https://doi.org/10.1007/978-3-319-95651-0_15
  19. Peco Chacón, A. M., García Márquez, F. P. (2021). False Alarm Detection in Wind Turbine Management by Tree Model. Lecture Notes on Data Engineering and Communications Technologies, 543–553. https://doi.org/10.1007/978-3-030-79203-9_42
  20. Qiu, Y., Feng, Y., Infield, D. (2020). Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method. Renewable Energy, 145, 1923–1931. https://doi.org/10.1016/j.renene.2019.07.110
  21. Asaadi, M., Izadi, I., Hassanzadeh, A., Yang, F. (2022). Assessment of alarm systems for mixture processes and intermittent faults. Journal of Process Control, 114, 120–130. https://doi.org/10.1016/j.jprocont.2022.04.002
Determining the efficiency of techniques for optimizing the number of tags in modern human-machine interfaces under conditions of limited resources

Downloads

Published

2024-08-30

How to Cite

Polupan, V., Mirkevych, R., Pupena, O., Klymenko, O., & Mirkevych, O. (2024). Determining the efficiency of techniques for optimizing the number of tags in modern human-machine interfaces under conditions of limited resources. Eastern-European Journal of Enterprise Technologies, 4(2 (130), 52–66. https://doi.org/10.15587/1729-4061.2024.309029