Development оf energy saving technology of two-stage biomass gasification for cogeneration plants

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.30986

Keywords:

biomass, two-stage gasification, cogeneration plant, internal combustion engine, exergy analysis

Abstract

A two-stage fine biomass gasification process for the low - power generation plants based on ICE, providing the tar content in the producer gas of no more than 7.1 mg/m3n that meets the requirements of the ICE producers was developed. Based on the results of experimental studies of the two-stage fine biomass gasification process, the effective process regimes were determined. The optimal range of the specific air flow, which provides a stable process of oxidative biomass pyrolysis in a dense layer at the pyrolysis temperature not exceeding 800oC is 25.0 55.0 m3/(m2  h).

Efficiency of the oxidative pyrolysis process reaches 98.0% taking into account the disposal of all heat flows. Efficiency of the coke residue gasification process without the use of sensible heat of the producer gas is on average 78.0%. Using the sensible heat of the producer gas allows to improve gasification process efficiency to an average of 96.4%.

Numerical and theoretical studies of gas ICE operation have shown that the gas ICE operation on the producer gas with a calorific value of 7.6 MJ/m3 is optimum. In this case, the fall of ICE effective power is 16.0%, and the cost of electric power generation is 0.39 UAH/(kW∙h). The results of studies have also shown that increasing the natural gas proportion in a mixture of more than 40.0% is not desirable, since it leads to higher cost of electric power generation up to 1.04 UAH/ (kW∙h) that corresponds to the cost of electric power from the external power system.

Exergy analysis of a cogeneration plant has shown a high value of total exergy efficiency of 45 %, while exergy efficiency of individual circuit elements, such as a pyrolyzer and gasifier reaches 96 %, and the "ICE-generator" unit - 91 %. Such values of efficiency are caused by deep disposal of all heat flows in the circuit.

Author Biography

Екатерина Владимировна Кремнева, National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005

Assistant

Department of industrial power system

References

  1. Postanova Kabinetu Ministriv Ukrai'ny vid 9 lypnja 2014 r. № 293 «Pro stymuljuvannja zamishhennja pryrodnogo gazu u sferi teplopostachannja» (Iz zminamy, vnesenymy zgidno z Postanovoju KM № 451 vid 10.09.2014) (2014). Verhovna Rada Ukrai'ny. Ofic. vyd. Kiev: Oficijnyj visnyk Ukrai'ny, 62, 34.
  2. Zakon Ukrai'ny «Pro elektroenergetyku» vid 16 zhovtnja 1997 year № 575/97-VR (Iz zminamy) (1997). Verhovna Rada Ukrai'ny. Oficial vyd. Kiev: Oficijnyj visnyk Ukrai'ny, 1, 1.
  3. Postanova NKRE «Pro zatverdzhennja Porjadku vstanovlennja, peregljadu ta prypynennja dii' «zelenogo» taryfu dlja sub’jektiv gospodars'koi' dijal'nosti» vid 22 sichnja 2009 year № 32 (2009). Verhovna Rada Ukrai'ny. Oficial Vyd. Oficijnyj visnyk Ukrai'ny, 7, 233.
  4. Geletuha, G. G., Zheljezna, T. A., Kucheruk, P. P., Olijnyk, Je. M. (2014). Suchasnyj stan ta perspektyvy rozvytku bioenergetyky v Ukrai'ni. Analitychna zapyska BAU, 9, 32. Available at: http://www.uabio.org/img/files/docs/position-paper-uabio-9-ua.pdf
  5. Kirjavainen, M., Savola, T. (2004). Small- scale biomass CHP technologies situation in Finland, Denmark and Sweden. Espoo. Available at: http://www.opet-chp.net/download/wp2/small_scale_biomass_chp_technologies.pdf
  6. Devi, L. (2005). Catalytic removal of biomass tars; Olivine as prospective in-bed catalyst for fluidized-bed biomass. Technische Universiteit Eindhoven, 142.
  7. Ulrik, H. (2003). The Design, Construction and Operation of a 75 kW Two-Stage Gasifier. ECOS-2003, Copenhagen, Denmark.
  8. Shevchenko, G. L., Shishko, Ju. V., Kremneva, E. V. (2010). Kompleksnaja tehnologija termicheskoj pererabotki biomassy. Tehnіchna teplofіzika ta promislova teploenergetika: zbіrnik naukovih prac', 2, 217–227.
  9. Kremneva, K. V., Shevchenko, G. L., Shishko, Ju. V., Usenko, A. Ju., Kremnev, V. E., Gubins'kij, S. M. (2009). Patent 41146 Ukraїna, MPK (2009) V01J 20/20. Sposіb gazifіkacії tverdogo paliva. Zajavnik ta vlasnik patentu Nacіonal'na metalurgіjna akademіja Ukraїni. № u 2008 13136; applied: 12.11.2008; published: 12.05.2009, Bjul. № 9.
  10. Korchevoj, Ju. P., Majstrenko, A. Ju., Topal, A. I. (2004). Jekologicheski chistye ugol'nye jenergotehnologii. Kiev: Proekt “Naukova dumka”, 186.
  11. Kantorovich, B. V. (1958). Osnovy teorii gorenija i gazifikacii tverdogo topliva. Moscow: Izdatel'stvo akademii nauk SSSR, 593.
  12. Kadyshev, V. G., Tiunov, S. V. (2002). Raschet rabochego processa porshnevyh i kombinirovannyh avtotraktornyh dvigatelej. Naberezhnye chelny: KamGPI, 62.
  13. Kremneva, E. V., Kremnev, V. E. (2005). Issledovanie vlijanija osnovnyh parametrov parovozdushnoj gazifikacii drevesnogo uglja na kachestvo generatornogo gaza. Metallurgicheskaja teplotehnika, 1, 283–292.
  14. Dmitrochenkova, Je. I. (2010). Jeksergeticheskij analiz kogeneracionnoj ustanovki na baze rekonstruirovannogo dvigatelja vnutrennego sgoranija. Vіsnik Donbas'koї natcionalnoi akademii budіvnitctva і arhіtekturi. Іnzhenernі sistemi ta tehnogenna bezpeka, 6 (86), 108–116.

Published

2014-12-15

How to Cite

Кремнева, Е. В. (2014). Development оf energy saving technology of two-stage biomass gasification for cogeneration plants. Eastern-European Journal of Enterprise Technologies, 6(8(72), 40–47. https://doi.org/10.15587/1729-4061.2014.30986

Issue

Section

Energy-saving technologies and equipment