Determining patterns in the separation of hemp seed hulls

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.309869

Keywords:

hemp seeds, seed hulling, seed kernel, seed hulls separation, division by size, cleaning, aspiration column

Abstract

The subject of this study is the technological processes of separation, the hull of industrial hemp seeds, an aspiration column, and whole kernels.

The problem solved was determining the technical and technological solutions that could enable the intensification of production processes for separating industrial hemp seeds.

The separation of hemp seed hull by linear dimensions on sieves with round and elongated holes has been investigated.

It was found that the percentage of seed hulls retained by sieves with circular holes was 25.98 % for ø3.5 mm, 23.59 % for ø3.0 mm, and 40.28 % for ø2.0 mm, respectively. Sieves ø3.5 mm and ø2.0 mm made it possible to obtain seed hulls fractions with two components conditionally different in the «mass-size» ratio.

Using sieves with elongated holes enabled obtaining fractions consisting of at least three components. Sieves with elongated working holes of 3.0×20 mm, due to their low ability (1.76 %) to retain hemp seed hull components, were ineffective.

The clogging levels of kernels in seed hulls, separated by linear dimensions on combined sieves with round and elongated holes, were as follows: separation option No. 1 – 48.70 %, option No. 2 – 45.74 %, option No. 3 – 60.25 %, option No. 4 – 49.32 %, respectively.

It was established that the use of an aspiration column made it possible to remove up to 32.1 % of clogging in the form of a light fraction. The application of the aspiration column reduced the content of seed coating in separation option No. 1 by 3.0–5.7 times, option No. 2 by 1.35–3.7 times, option No. 3 by 1.9–11.2 times, and option No. 4 by 1.5–4.8 times, respectively.

The quantitative and component composition of seed hulls fractions obtained under conditions of using an aspiration column with set rational values of the air damper opening angle α=53° and the vertical tilt angle of the air channel β=6°, was as follows: Stage I – «heavy» fraction – 51.78 %, 27.56 % – waste, up to 20 % – «light» fraction of Stages II and III

Author Biographies

Viktor Sheichenko, Poltava State Agrarian University

Doctor of Technical Sciences, Professor

Department of Agricultural Engineering and Road Transport

Dmytro Petrachenko, Separate Structural Subdivision “Hlukhiv Agrotechnical Professional College of SNAU”

PhD

Department of Agroengineering

Ivan Rogovskii, National University of Life and Environmental Sciences of Ukraine

Doctor of Technical Sciences, Professor

Department of Technical Service and Engineering Management named after M. P. Momotenko

Igor Dudnikov, Poltava State Agrarian University

PhD, Associate Professor

Department of industrial machinery

Vitaliy Shevchuk, Uman National University of Horticulture

PhD, SeniorResearcher

Department of Agricultural Engineering

Denys Sheichenko, Poltava State Agrarian University

Department of Agricultural Engineering

Oleksiy Derkach, National University of Life and Environmental Sciences of Ukraine

PhD, Associate Professor

Department of Agricultural Machines and System Engineering named after Academician P. M. Vasylenko

Ruslan Shatrov, National University of Life and Environmental Sciences of Ukraine

PhD, Associate Professor

Department of Technical Service and Engineering Management named after M. P. Momotenko

References

  1. Schultz, C. J., Lim, W. L., Khor, S. F., Neumann, K. A., Schulz, J. M., Ansari, O. et al. (2020). Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research, 2, 100025. https://doi.org/10.1016/j.jafr.2020.100025
  2. Alonso-Esteban, J. I., Pinela, J., Ćirić, A., Calhelha, R. C., Soković, M., Ferreira, I. C. F. R. et al. (2022). Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds. Food Chemistry, 374, 131754. https://doi.org/10.1016/j.foodchem.2021.131754
  3. Sheichenko, V., Petrachenko, D., Koropchenko, S., Rogovskii, I., Gorbenko, O., Volianskyi, M., Sheichenko, D. (2024). Substantiating the rational parameters and operation modes for the hemp seed centrifugal dehuller. Engineering Technological Systems, 2 (1 (128)), 34–48. https://doi.org/10.15587/1729-4061.2024.300174
  4. Kiurchev, S., Kolodiy, O., Burdin, V. (2018). Analysis of pneumoseparators. Proceedings of the Tavria State agrotechnological university, 18 (2), 83–98. Available at: https://oj.tsatu.edu.ua/index.php/pratsi/article/view/60/57
  5. Aliev, E. B., Yaropud, V. M., Dudin, V. Yr., Pryshliak, V. M., Pryshliak, N. V., Ivlev, V. V. (2018). Research on sunflower seeds separation by airflow. INMATEH Agricultural Engineering, 56 (3), 119–128. Available at: https://inmateh.eu/volumes/pdfs/27.pdf
  6. Petrachenko, D. О., Dudukova, S. V. (2023). Review of physical-mechanical characteristics of industrial hemp seeds in terms of processing. Scientific Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, 34 (73 (3)), 105–109. https://doi.org/10.32782/2663-5941/2023.3.2/18
  7. Kyurchev, S. V. (2018). Methods of investigation of influence of humidity family of summer on rational speed of air flow in pneumgravitation separator. Machinery & Energetics. Journal of Rural Production Research, 9 (2), 139–141. Available at: https://dglib.nubip.edu.ua/server/api/core/bitstreams/531fdcb7-38cb-43d2-b187-78567a959a40/content
  8. Aliiev, E., Lupko, C. (2020). Morphological Characteristics and Physical & Mechanical Properties of seeds of small-seeded crops. National Interagency Scientific and Technical Collection of Works. Design, Production and Exploitation of Agricultural Machines, 50, 27–35. https://doi.org/10.32515/2414-3820.2020.50.27-35
  9. Fadieiev, L. (2021). Pofraktsiynist – oboviazkova skladova pry ochyshchenni zerna ta vyrobnytstvi nasinnia. AgroONE, 70. Available at: https://www.agroone.info/publication/pofrakcijnist-obov-jazkova-skladova-pri-ochishhenni-zerna-ta-virobnictvi-nasinnja/
  10. Aliiev, E., Chebotarev, V. (2018). Rational precision technological line of separation processes of seed sunflower material. Naukovo-tekhnichnyi biuleten Instytutu oliynykh kultur NAAN, 25, 155–160. Available at: http://aliev.in.ua/doc/stat/2018/stat_21.pdf
  11. Bredykhin, V. V. (2017). Teoretychni osnovy vibropnevmovidtsentrovoho rozdilennia nasinnievykh materialiv za hustynoiu nasinnia. Kharkiv, 81.
  12. Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2 (7 (80)), 63–69. https://doi.org/10.15587/1729-4061.2016.65920
  13. Rezuev, S. B., Bakaev, I. V., Rezuev, V. S. (2011). Separatory dlya zerna. Sovremennoe sostoyanie i tendentsii razvitiya. Hranenie i pererabotka zerna, 9, 36–41.
  14. Olkhovskyi, V., Dudarev, I. (2021). Separation methods and separators of grain mass. Agricultural Machines, 47, 102–112. https://doi.org/10.36910/acm.vi47.655
  15. Datsyshyn, O. V., Tkachuk, A. I., Hvozdev O. V. et al. (2008). Tekhnolohichne obladnannia zernopererobnykh ta oliynykh vyrobnytstv. Vinnytsia: Nova Knyha, 488. Available at: http://www.tsatu.edu.ua/ophv/wp-content/uploads/sites/13/О.В.-Дацишин-Технологічне-обладнання-зернопереробних-та-олійних-виробництв.pdf
  16. Paun, A., Stroescu, Gh., Zaica, Al., Stefan, V., Olan, M., Yasbeck Khozamy, S. (2021). Obtaining “Organic Seeds” of Vegetable and Industrial Plants Using the Aerodynamic Properties of the Seeds. INMATEH Agricultural Engineering, 63 (1), 355–364. https://doi.org/10.35633/inmateh-63-36
  17. Stroescu, G., Paun, A., Voicea, I., Persu, C., Matache, A., Bunduchi, G. (2020). Influence of moisture content on aerodynamic properties of agricultural products in separation of impurities process. 19th International Scientific Conference Engineering for Rural Development Proceedings. https://doi.org/10.22616/erdev.2020.19.tf315
  18. Rogovskii, I., Titova, L., Trokhaniak, V., Trokhaniak, O., Stepanenko, S. (2019). Experimental Study in a Pneumatic Microbiocature Separator with Apparatus Camera. Series II - Forestry • Wood Industry • Agricultural Food Engineering, 12 (61 (1)), 117–128. https://doi.org/10.31926/but.fwiafe.2019.12.61.1.10
  19. Lazykyn, V., Burkov, A., Glushkov, A., Mokiyev, V. (2021). Defining key design parameters for separation chamber of fractioning pneumatic seed separator. 20th International Scientific Conference Engineering for Rural Development Proceedings. https://doi.org/10.22616/erdev.2021.20.tf037
  20. Choszcz, D. J., Reszczyński, P. S., Kolankowska, E., Konopka, S., Lipiński, A. (2020). The Effect of Selected Factors on Separation Efficiency in a Pneumatic Conical Separator. Sustainability, 12 (7), 3051. https://doi.org/10.3390/su12073051
  21. Găgeanu, I., Gheorghe, G., Persu, C., Vlăduț, N.-V., Cujbescu, D., Matache, M. G. et al. (2023). Contributions to the Process of Calibrating Corn Seeds Using a Calibrator with Cylindrical Sieves. Applied Sciences, 13 (17), 9927. https://doi.org/10.3390/app13179927
  22. Bondarenko, L., Halko, S., Matsulevych, O., Tetervak, I., Vershkov, O., Miroshnyk, O. et al. (2022). Experimental Research on Unit Operation for Fruit Crops’ Bones Calibration. Applied Sciences, 13 (1), 21. https://doi.org/10.3390/app13010021
  23. Golovin, A. Y., Chupin, P. V., Soyunov, A. S., Prokopov, S. P., Abdylmanova, R. H. (2021). Comparative analysis of operation indicators of flat sieve vibrating in horizontal plane. IOP Conference Series: Earth and Environmental Science, 659 (1), 012047. https://doi.org/10.1088/1755-1315/659/1/012047
  24. Stoica, D., Voicu, G., Popa, L., Constantin, G., Tudor, P. (2020). Assessment indices for the efficiency of the separation process on a sieve with conical separation surface. INMATEH Agricultural Engineering, 60 (1), 193–200. https://doi.org/10.35633/inmateh-60-22
  25. Special Hull Separator. Available at: https://mehzavod.com.ua/en/catalog/mashina-semenoveechnaya/?sphrase_id=12530
  26. Khailis, H. A., Konovaliuk, D. M. (1992). Osnovy proektuvannia i doslidzhennia silskohospodarskykh mashyn. Kyiv: NMK VO, 320.
  27. Oseiko, M. I. (2006). Tekhnolohiya roslynnykh oliy. Kyiv: Varta, 280.
  28. Montero, L., Ballesteros-Vivas, D., Gonzalez-Barrios, A. F., Sánchez-Camargo, A. del P. (2023). Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1039180
  29. Uzunlar, E. A., Kahveci, B. (2021). Nutritional Properties and Health Effects of Hemp Seed. Res & Rev Health Care Open Acc J, 7 (2). Available at: https://lupinepublishers.com/research-and-reviews-journal/pdf/RRHOAJ.MS.ID.000258.pdf
  30. Saini, P., Panghal, A., Mittal, V., Gupta, R. (2021). Hempseed (Cannabis sativa L.) bulk mass modeling based on engineering properties. Journal of Food Process Engineering, 45 (1). https://doi.org/10.1111/jfpe.13929
  31. Taheri-Garavand, A., Nassiri, A., Gharibzahedi, S. (2012). Physical and mechanical properties of hemp seed. International Agrophysics, 26 (2), 211–215. https://doi.org/10.2478/v10247-012-0031-9
  32. Jian, F., Yavari, S., Narendran, R. B., Jayas, D. S. (2018). Physical Properties of Finola® Hemp Seeds: Clean and Containing Dockages. Applied Engineering in Agriculture, 34 (6), 1017–1026. https://doi.org/10.13031/aea.12853
Determining patterns in the separation of hemp seed hulls

Downloads

Published

2024-08-21

How to Cite

Sheichenko, V., Petrachenko, D., Rogovskii, I., Dudnikov, I., Shevchuk, V., Sheichenko, D., Derkach, O., & Shatrov, R. (2024). Determining patterns in the separation of hemp seed hulls. Eastern-European Journal of Enterprise Technologies, 4(1 (130), 54–68. https://doi.org/10.15587/1729-4061.2024.309869

Issue

Section

Engineering technological systems