Critical parameters shift in classical fluids under the influence of nanoparticle additives

Authors

  • Сергей Викторович Артеменко Odessa national academy of food technology 1/3 Dvorianskaya St., 65082 Odessa, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.31644

Keywords:

nanofluid, critical point, nanotubes, fullerenes, graphene, titanium dioxide, zinc oxide

Abstract

The last decade has brought a growing number of studies about nanofluids as perspective working fluids with abnormally high thermal conductivity and a huge potential for intensifying heat and mass transfer. Despite the abundance of published research papers on nanofluid heat and mass transfer, the critical properties of these systems have been hardly considered at all. The key factors that determine the thermodynamic properties and the phase behavior of working fluids are the critical point for pure liquids and the critical lines for binary mixtures.

Therefore, we have devised a thermodynamic model for estimating the impact of nanoparticles upon the shift of the critical point and the balance line between fluid and steam for traditional working fluids. Using the model, we have estimated the shift of the critical point for a classical working fluid—carbon dioxide—with additives of structured carbonic materials (nanotubes, fullerenes, and graphene flakes) and metal oxides (titanium and silicon dioxides as well as zinc and copper oxides).

The research findings prove a positive shift of the critical temperature and density of the system point with increasing density of nanoparticle material.

Knowing the critical point is as important as taking into account the characteristics of heat and mass transfer because addition of nanostructured materials changes both the thermal and dynamic surface of nanofluids and the topology of their phase behavior.

Author Biography

Сергей Викторович Артеменко, Odessa national academy of food technology 1/3 Dvorianskaya St., 65082 Odessa, Ukraine

Dr. Sc., senior researcher, professor

Chair of information systems and networks 

References

  1. Maxwell, J. A. (1891). Treatise on Electricity and Magnetism, London : Oxford university press. (Reprinted by Dover Publications, New York, 1954)
  2. Happel, J. (1958). Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, AIChE Journal, 4 (2), 197–201. doi: 10.1002/aic.690040214
  3. Hamilton, R. L., Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1 (3), 187–191. doi: 10.1021/i160003a005
  4. Ahuja, A. S. (1975). Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. Journal of Applied Physics, 46 (8), 3408–3416. doi: 10.1063/1.322107
  5. Das, S. K., Choi, S. U. S., Yu, W., Pradeep, T. (2007). Nanofluids: science and Technology, New Jersey: Wiley, 146.
  6. Choi, S. U. S., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles, in Proc. of International Mechanical Engineering Congress and Exhibition, San Francisco, CA, 12–17.
  7. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78 (6), 718–720. doi: 10.1063/1.1341218
  8. Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal Conductivity of Nanoparticle – Fluid Mixture. Journal of Thermophysics and Heat Transfer, 13 (4), 474–480. doi: 10.2514/2.6486
  9. Putnam, S. A., Cahill, D. G., Braun, P. V., Ge, Z., Shimmin, R. G. (2006). Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics, 99 (8), 084308. doi: 10.1063/1.2189933
  10. Keblinski, P., Eastman, J. A., Cahill, D. G. (2005). Nanofluids for thermal transport, Materials Today, 8 (6), 36–44. doi: 10.1016/s1369-7021(05)70936-6
  11. Lee, J. H., Lee, S. H., Choi, C. J., Jang, S. P., Choi, S. U. S. (2010). A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1 (4), 269–322. doi: 10.1260/1759-3093.1.4.269
  12. Yu, W., France, D. M., Routbort, J. L., Choi, S. U. S. (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 29 (5), 432–460. doi: 10.1080/01457630701850851
  13. Ozerinç, S., Kakaç, S., Yazıcıoglu, A. G. (2010). Enhanced thermal conductivity of nanofluids: a state of the art review, Microfluidics and Nanofluidics, 8 (2), 145–170. doi: 10.1007/s10404-009-0524-4
  14. Wang, X. Q., Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 46 (1), 1–19. doi: 10.1016/j.ijthermalsci.2006.06.010
  15. Chandrasekar, M., Suresh, S. (2009). A review on the mechanisms of heat transport in nanofluids. Heat Transfer Engineering, 30 (14), 1136–1150. doi: 10.1080/01457630902972744
  16. Godson, L., Raja, B., Lal, D. M., Wongwises, S. (2010). Enhancement of heat transfer using nanofluids: an overview, Renewable and Sustainable Energy Reviews, 14 (2), 629–641. doi: 10.1016/j.rser.2009.10.004
  17. Sergis, A., Hardalupas, Y. (2011). Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Research Letters, 6 (1), 391–427. doi: 10.1186/1556-276x-6-391
  18. King, C., Pendlebury, D. A. (2013). Research fronts 2013. Available at: http://sciencewatch.com/sites/sw/files/sw-article/media/research-fronts-2013.pdf
  19. Sarkar, J. A critical review of heat transfer correlations of nanofluids (2011). Renewable and Sustainable Energy Review, 15 (6), 3271–3277. doi: 10.1016/j.rser.2011.04.025
  20. Yu, W., Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 435873–435890. doi: 10.1155/2012/435873
  21. Murshed, S. M. S., Leong, K. C., Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids, International journal of thermal science, 47 (5), 560–568. doi: 10.1016/j.ijthermalsci.2007.05.004
  22. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physical Letters, 78 (6), 718–720. doi: 10.1063/1.1341218
  23. Botha, S. S., Ndungu, P., Bladergroen, B. J. (2011). Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Industrial & Engineering Chemistry Research, 50 (6), 3071–3077. doi: 10.1021/ie101088x
  24. Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G. (2007). Stability and thermal conductivity characteristics of nanofluids, Thermochimica Acta, 455 (1-2), 70–74. doi: 10.1016/j.tca.2006.11.036
  25. Pang, C., Won Lee, J., Kang, Y. (2015). Review on combined heat and mass transfer characteristics in nanofluids, International journal of thermal science, 87, 49–67. doi: 10.1016/j.ijthermalsci.2014.07.017
  26. Nine, M. J., Munkhbayar, B., Rahman, M. S., Chung, H., Jeong, H. (2013). Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization, Materials Chemistry and Physics, 141 (1), 636–642. doi: 10.1016/j.matchemphys.2013.05.032
  27. Baby, T. T., Ramaprabhu, S. (2011). Synthesis and nanofluid application of silver nanoparticles decorated grapheme. Journal of Materials Chemistry, 21 (26), 9702–9709. doi: 10.1039/c0jm04106h
  28. Baby, T. T., Ramaprabhu, S. (2011). Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid, Nanoscale, 3 (5), 2208–2214. doi: 10.1039/c0nr01024c
  29. Nikitin, D., Mazur, V. (2012). Thermodynamic and phase behavior of fluids embedded with nanostructured materials, International Journal of Thermal Sciences, 62, 44–49. doi: 10.1016/j.ijthermalsci.2012.02.021
  30. Span, R., Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25 (6), 1509–1596. doi: 10.1063/1.555991

Published

2014-12-19

How to Cite

Артеменко, С. В. (2014). Critical parameters shift in classical fluids under the influence of nanoparticle additives. Eastern-European Journal of Enterprise Technologies, 6(5(72), 29–33. https://doi.org/10.15587/1729-4061.2014.31644

Issue

Section

Applied physics