Structural improvement of a mobile device for pre-heated treatment of vegetable raw materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.318559

Keywords:

functional apparatus, plant raw materials, polycomponent semi-finished products, preliminary heat treatment

Abstract

The object of this study is the heat treatment of multicomponent masses, for example, Jerusalem artichoke, pumpkin, and black chokeberry, during thickening and drying in an improved mobile functional apparatus for preliminary heat operations. The engineering solution is aimed at the implementation of resource-saving preliminary thermal operations of plant raw materials on mobile functional equipment. The structural difference of the device for the preliminary heat treatment of plant raw materials is the presence of a mobile platform with a carousel arrangement of rolling containers with changeable working elements. The device provides simultaneous implementation of thermal operations in three functional containers. The vacuum compartment and the steam generator with flexible technical lines are connected to functional tanks equipped with bubbler disks to improve heat transfer. The central platform has a microprocessor-based automatic control unit and a spring mechanism for lifting the cover equipped with Peltier elements for secondary heat conversion. The tanks are heated by a film resistive electric heater. Peltier elements are mounted on the inner surface of the cover to convert secondary heat for autonomous operation of the fan. For preliminary heat treatment of liquid media, the functional container is additionally equipped with a stirrer with a heated surface (the usable area of the thermal surface is 0.28 m2).

The duration of reaching a stationary temperature regime (50 °С) of the multicomponent mass (Jerusalem artichoke – 50 %, pumpkin – 40 %, and chokeberry – 10 %) in a mobile device is 31.4 % less than in a classic design. The duration of the drying process in the functional device is 40 minutes, and in the conventional KVM-150 device – 60 minutes. A 1.8-fold decrease in the specific metal capacity was established. Total heat losses are reduced by 1.24 times, and the usable heating surface is increased by 1.3 times

Author Biographies

Andrii Zahorulko, State Biotechnological University

PhD, Associate Professor

Department of Equipment and Engineering of Processing and Food Production

Iryna Voronenko, National University of Life and Environmental Sciences of Ukraine

Doctor of Economic Sciences, Senior Researcher

Department of Information Systems and Technologies

Lyudmila Chuiko, State Biotechnological University

PhD, Head of Research Department

Research Department

Nataliia Tytarenko, State Biotechnological University

Department of Equipment and Engineering of Processing and Food Production

Alla Solomon, Vinnitsa National Agrarian University

PhD, Associate Professor

Department of Food Technologies and Microbiology

Oksana Skoromna, Vinnitsa National Agrarian University

PhD, Associate Professor

Department of Production and Processing Technologies of Livestock Products

Maksym Prykhodko, FOP Maksym Konstantinovych Prykhodko; State Biotechnological University

PhD student

Department of management, business and administration

References

  1. Zdravkovic, M., Snoeck, E. R., Zicari, A., Vranken, L., Heinz, V., Smetana, S., Aganovic, K. (2021). Sustainability assessment of mobile juice processing unit: Farmers perspective. Future Foods, 4, 100064. https://doi.org/10.1016/j.fufo.2021.100064
  2. Nazarova, L. V. (2014). Stan kharchovoi promyslovosti Ukrainy ta perspektyvy pidpryiemstv haluzi na zovnishnikh rynkakh. Available at: http://globalnational.in.ua
  3. Pathmanaban, P., Gnanavel, B. K., Anandan, S. S., Sathiyamurthy, S. (2023). Advancing post-harvest fruit handling through AI-based thermal imaging: applications, challenges, and future trends. Discover Food, 3(1). https://doi.org/10.1007/s44187-023-00068-2
  4. Sashnova, M., Zahorulko, A., Savchenko, T., Gakhovich, S., Parkhomenko, I., Pankov, D. (2020). Improving the quality of the technological process of packaging shape formation based on the information structure of an automated system. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 28–36. https://doi.org/10.15587/1729-4061.2020.205226
  5. Salifou, A., Konfo, C., Bokossa, A., Nicodème, C., Tchobo, F. P., Soumanou, M. (2023). Innovative approaches in food processing: enhancing quality, preservation, and safety through advanced technologies: A review. World Journal of Advanced Research and Reviews, 20 (2), 637–648. https://doi.org/10.30574/wjarr.2023.20.2.2297
  6. Hubbermann, E. M.; Carle, R., Schweiggert, R. M. (Eds). (2016). Coloring of Low-Moisture and Gelatinized Food Products. Handbook on Natural Pigments in Food and Beverages. Woodhead Publishing, 179–196. https://doi.org/10.1016/b978-0-08-100371-8.00008-7
  7. Zahorulko, A., Zagorulko, A., Chuiko, L., Solomon, A., Sushko, L., Tesliuk, Y. et al. (2023). Improving the reactor for thickening organic plant-based polycomponent semi-finished products with high degree of readiness. Eastern-European Journal of Enterprise Technologies, 6 (11 (126)), 103–111. https://doi.org/10.15587/1729-4061.2023.294119
  8. König, L. M., Renner, B. (2019). Boosting healthy food choices by meal colour variety: results from two experiments and a just-in-time Ecological Momentary Intervention. BMC Public Health, 19 (1). https://doi.org/10.1186/s12889-019-7306-z
  9. Habanova, M., Saraiva, J. A., Holovicova, M., Moreira, S. A., Fidalgo, L. G., Haban, M. et al. (2019). Effect of berries/apple mixed juice consumption on the positive modulation of human lipid profile. Journal of Functional Foods, 60, 103417. https://doi.org/10.1016/j.jff.2019.103417
  10. Pylypenko, O. Ye. (2017). Development of Ukrainian Food Industry. Naukovi pratsi NUKhT, 23 (3), 15–25. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Npnukht_2017_23_3_4
  11. Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/j.foodres.2020.109854
  12. Minenko, S., Cherevko, O., Skrynnik, V., Tesliuk, H., Bondar, M., Skoromna, O. et al. (2023). Improvement of the vacuum evaporator for the production of paste-like semi-finished products with a high degree of readiness. Eastern-European Journal of Enterprise Technologies, 5 (11 (125)), 76–83. https://doi.org/10.15587/1729-4061.2023.288896
  13. Marković, M. S., Radosavljević, D. B., Pavićević, V. P., Ristić, M. S., Milojević, S. Ž., Bošković-Vragolović, N. M., Veljković, V. B. (2018). Influence of common juniper berries pretreatment on the essential oil yield, chemical composition and extraction kinetics of classical and microwave-assisted hydrodistillation. Industrial Crops and Products, 122, 402–413. https://doi.org/10.1016/j.indcrop.2018.06.018
  14. Telezhenko, L. N., Bezusov, A. T. (2004). Biologicheski aktivnye veshchestva fruktov i ovoshchei: sokhranenie pri pererabotke. Odessa: Optimum, 268.
  15. Fellows, P. J.; Fellows, P. J. (Ed.) (2022). Properties of foods and principles of processing. Food Processing Technology. Woodhead Publishing, 3–95. https://doi.org/10.1016/b978-0-323-85737-6.00007-8
  16. Sruthy, G. N., Sandhya, K. R., Kumkum, C. R., Mythri, R., Sharma, M.; Tarafdar, A., Pandey, A., Sirohi, R., Soccol, C., Dussap, C.-G. (Eds). (2022). Thermal processing technologies for food. Current Developments in Biotechnology and Bioengineering. Elsevier, 263–300. https://doi.org/10.1016/b978-0-323-91158-0.00014-4
  17. Zahorulko, A., Zagorulko, A., Cherevko, O., Dromenko, O., Solomon, A., Yakobchuk, R., Bondarenko, O., Nozdrina, N. (2021). Determination of the heat transfer coefficient of a rotary film evaporator with a heating film-forming element. Eastern-European Journal of Enterprise Technologies, 6 (8 (114)), 41–47. https://doi.org/10.15587/1729-4061.2021.247283
  18. Dolores Alvarez, M., Canet, W. (2013). Time-independent and time-dependent rheological characterization of vegetable-based infant purees. Journal of Food Engineering, 114 (4), 449–464. https://doi.org/10.1016/j.jfoodeng.2012.08.034
  19. Adalja, A., Lichtenberg, E. (2018). Implementation challenges of the food safety modernization act: Evidence from a national survey of produce growers. Food Control, 89, 62–71. https://doi.org/10.1016/j.foodcont.2018.01.024
  20. Zahorulko, A., Zagorulko, A., Cherevko, O., Dromenko, O., Solomon, A., Yakobchuk, R. (2021). Determination of the heat transfer coefficient of a rotary film evaporator with a heating film-forming element. Eastern-European Journal of Enterprise Technologies, 6 (8 (114)), 41–47. https://doi.org/10.15587/1729-4061.2021.247283
  21. Zahorulko, A., Zagorulko, A., Mykhailov, V., Ibaiev, E. (2021). Improved rotary film evaporator for concentrating organic fruit and berry puree. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 92–98. https://doi.org/10.15587/1729-4061.2021.237948
  22. Zahorulko, A. M., Zahorulko, O. Ye. (2021). Pat. No. 149981 UA. Plivkopodibnyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. MPK H05B 3/36, B01D 1/22, G05D 23/19. No. u202102839; declareted: 28.05.2021; published: 23.12.2021, Bul. No. 51, 4. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=279802
  23. MZ-2S-316 – Reaktor vakuum vyparnyi. Available at: https://www.oborud.info/product/jump.php?6109&c=619
  24. Cherevko, O. I., Maiak, O. A., Kostenko, S. M., Sardarov, A. M. (2019). Experimental and simulation modeling of the heat exchanche process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnolohii kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (29), 75–85. Available at: http://nbuv.gov.ua/UJRN/Pt_2019_1_9
  25. Zahorulko, A., Zagorulko, A., Fedak, N., Sabadash, S., Kazakov, D., Kolodnenko, V. (2019). Improving a vacuum-evaporator with enlarged heat exchange surface for making fruit and vegetable semi-finished products. Eastern-European Journal of Enterprise Technologies, 6 (11 (102)), 6–13. https://doi.org/10.15587/1729-4061.2019.178764
Structural improvement of a mobile device for pre-heated treatment of vegetable raw materials

Downloads

Published

2024-12-27

How to Cite

Zahorulko, A., Voronenko, I., Chuiko, L., Tytarenko, N., Ibaiev, E., Solomon, A., Skoromna, O., & Prykhodko, M. (2024). Structural improvement of a mobile device for pre-heated treatment of vegetable raw materials. Eastern-European Journal of Enterprise Technologies, 6(11 (132), 6–14. https://doi.org/10.15587/1729-4061.2024.318559

Issue

Section

Technology and Equipment of Food Production