Study of plasmon resonance phenomena in metal nanoparticles at low intense excitation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.31875

Keywords:

gold nanorods, nonlinear coefficients, cholesteric liquid crystals, gas optical sensors.

Abstract

The paper presents the results of experimental and theoretical studies of the synthesized gold nanorods with aiming out their subsequent doping in cholesteric liquid crystals. The synthesis of gold nanorods is done with different aspect ratios and by means of TEM, spectral characteristics and Mie theory, their size is defined. Experimental study of nonlinear parameters of gold nanorods is carried out by means of z-scan technique. In particular, the nonlinear absorption coefficients and refractive indices under the action of laser radiation of low power are calculated. These research results of gold nanorods nonlinearity are a prerequisite for further studies of nonlinear processes of composites based on cholesteric liquid crystals with gold nanorods. According to the research of these composites it is proposed to develop the active materials of primary transducer for harmful substances optical sensors.

Author Biographies

Зіновій Матвійович Микитюк, Lviv Polytechnic National University Str. Bandery 13, Lviv, Ukraine, 79013

Professor, Doctor of physics and mathematical science

The department of electronic devices 

Орест Євгенович Сушинський, Lviv Polytechnic National University Str. Bandery 13, Lviv, Ukraine, 79013

Associate professor, Candidate of physics and mathematical science

The department of electronic devices 

Марія Володимирівна Вісьтак, Danylo Halytsky Lviv National Medical University Str. Pekarska 69, Lviv, Ukraine, 79010

Associate professor, Candidate of physics and mathematical science

Biophysics department

Василь Степанович Петришак, Lviv Polytechnic National University Str. Bandery 13, Lviv, Ukraine, 79013

PhD student

The department of electronic devices 

Тарас Віталійович Пристай, Lviv Polytechnic National University Str. Bandery 13, Lviv, Ukraine, 79013

PhD student

The department of electronic devices 

References

  1. Srituravanich, W., Fang, N., Sun, C., Luo, Q., Zhang, X. (2004). Plasmonic nanolithography. Nano Letters, 4 (6), 1085–1088. doi: 10.1021/nl049573q
  2. Haes, A. J., Haynes, C. L., McFarland, A. D., Zou, S., Schatz, G. C., Van Duyne, R. P. (2005). Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bulletin, 30 (5), 368–375. doi: 10.1557/mrs2005.100
  3. Haes, A. J., Van Duyne, R. P. (2004). A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 379 (7-8), 920–930. doi: 10.1007/s00216-004-2708-9
  4. Haes, A. J., Mc Farland, A. D., Van Duyne, R. P. (2003). Nanoparticle optics: sensing with nanoparticle arrays and single nanoparticles. Proc. SPIE-Int. Soc. Opt. Eng., 5223, 197–207.
  5. Kelly, K. L., Coronado, E.L. Zhao, Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107 (3), 668–677. doi: 10.1021/jp026731y
  6. Haes, A. J., Zou, S., Schatz, G. C., Van Duyne, R. P. (2004). A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. The Journal of Physical Chemistry B, 108 (1), P. 109–116. doi: 10.1021/jp0361327
  7. Podoliak, N., Bartczak, D., Buchnev, O., Antonios, G., Kanaras, M. (2012). High Optical Nonlinearity of Nematic Liquid Crystals Doped with Gold Nanoparticles. The Journal of Physical Chemistry C, 116 (23), 12934−12939. doi: 10.1021/jp302558c
  8. Ouksova, E., Lysenko, D., Ksondzyk, S., Cseh, L., Mehl, G. H., Reshetnyak, V., Reznikov, Y. (2011). Strong Cubic Optical Nonlinearity of Gold Nanoparticles Suspension in Nematic Liquid Crystal. Molecular Crystals and Liquid Crystals, 545 (1), 1347−1356. doi: 10.1080/15421406.2011.568883
  9. Khoo, I.C., Williams, Y. Z., Lewis, B., Mallouk, T. (2005). Photorefractive CdSe and gold nanowire-doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals. Molecular Crystals and Liquid Crystals, 446 (1), 233−244. doi: 10.1080/15421400500377610
  10. Pratibha, R., Park, K., Smalukh, I., Park, W. (2009). Tunable optical metamaterial based on liquid crystal-gold nanosphere composite Optic Express., 17 (22), 19459–19469. doi: 10.1364/oe.17.019459
  11. Arantes, F. R., Figueiredo, N. A. M., Cornejo, D. R. (2011). Magnetic behavior of 10 nm-magnetite particles diluted in lyotropic liquid crystals. Journal of Applied Physics, 109 (7), 07E315-07E321. doi: 10.1063/1.3549616
  12. Mitróová, Z., Koneracká, M., Timko, M., Jadzyn, J., Vávra, I., Éber, N., Fodor-Csorba, K., Tóth-Katona, T., Vajda, A., Kopčanský, P. (2010). Structural transitions in nematic liquid crystals doped with magnetite functionalized single walled carbon nanotubes Physics Procedia., 9, 41‒44. doi: 10.1016/j.phpro.2010.11.011
  13. Aksimentyeva, O., Mykytyuk, Z., Fechan, A., Sushynskyy, O., Tsizh B. (2014). Cholesteric Liquid Crystal Doped by Nanosize Magnetite as an Active Medium of Optical Gas Sensor. Molecular Crystals and Liquid Crystals, 589 (1), 83−89. doi: 10.1080/15421406.2013.872354
  14. Hotra, Z., Mykytyuk, Z., Sushynskyy, O., Shymchyshyn, O., Petryshak V. (2012). Sensitive Element of Carbon Monoxide Sensor Based on Liquid Crystals Doped by Nanosized Fe. Annual Journal of Electronics, 6, 99–102.
  15. Hotra, Z. Yu., Vistak, M. V., Mykytyuk, Z. M., Sushynskyi, O. Ye., Prystay, T. V. (2013). Optoelectronic sensor of carbon monoxide on the basis of cholesteric liquid crystal doped by Fe2O3 magnetite. International scientific journal “Optoelectronic Information and communication technology”, 1 (25), 94–100.
  16. Sharma, V., Park, K., Srinivasarao, M. (2009). Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering, 65 (1-3), 1–38. doi: 10.1016/j.mser.2009.02.002
  17. Whitney, A. V., Elam, J. W., Zou, S., Zinovev, A. V., Stair, P. C. (2005). Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. The Journal of Physical Chemistry B, 109 (43), 20522–20528. doi: 10.1021/jp0540656
  18. Hong-Mei, G., Zhang-Kai, Z., Si, X., Hao, S., Xiong-Rui, S., Min, L., Qu-Quan, W. (2007). Intensity-dependent optical nonlinear absorption and refraction of gold nanorods. Chinese Physics Letters, 24 (12), 3443‒3436. doi: 10.1088/0256-307x/24/12/042

Published

2014-12-23

How to Cite

Микитюк, З. М., Сушинський, О. Є., Вісьтак, М. В., Петришак, В. С., & Пристай, Т. В. (2014). Study of plasmon resonance phenomena in metal nanoparticles at low intense excitation. Eastern-European Journal of Enterprise Technologies, 6(9(72), 36–42. https://doi.org/10.15587/1729-4061.2014.31875

Issue

Section

Information and controlling system