Development of heterogeneous data processing method in organizational and technical systems
DOI:
https://doi.org/10.15587/1729-4061.2025.322629Keywords:
heterogeneous data, unimodal functions, multimodal functions, destabilizing factors, heterogeneous groupingAbstract
The object of the study is heterogeneous data in organizational-technical systems. The subject of the study is the process of heterogeneous data processing. The problem of this study is enhancing the efficiency of heterogeneous data processing in organizational-technical systems while ensuring a predefined level of reliability, regardless of the volume of incoming data. A method for heterogeneous data processing in organizational-technical systems has been developed. The originality of the method lies in the use of additional improved procedures, which allow:
– achieving the placement of the initial population of agents in the combined algorithm swarm and their initial position in the search space, considering the uncertainty level of input data circulating in the organizational-technical system. This is achieved using correction coefficients;
– accounting for the initial velocity of each agent in the combined algorithm swarm, enabling search prioritization in the corresponding search space (across elements and components of the organizational-technical system);
– determining the feasibility of decisions in heterogeneous data processing, considering external factors, which reduces the solution search time;
– ability to calculate the required computational resources, determining the additional resources needed in case existing computational capacity is insufficient.
A practical implementation of the proposed method was tested on heterogeneous data processing in an operational military task force, demonstrating: a 14–20 % increase in decision-making efficiency due to the integration of additional procedures; a decision reliability level maintained at 0.9
References
- Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
- Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
- Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
- Shyshatskyi, A., Stasiuk, T., Odarushchenko, E., Berezanska, K., Demianenko, H. (2023). Method of assessing the state of hierarchical objects based on bio-inspired algorithms. Advanced Information Systems, 7 (3), 44–48. https://doi.org/10.20998/2522-9052.2023.3.06
- Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
- Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
- Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
- Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
- Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
- Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
- Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
- Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
- Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
- Maccarone, A. D., Brzorad, J. N., Stonel, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 541. https://doi.org/10.1675/1524-4695-31.4.541
- Litvinenko, O., Kashkevich, S., Shyshatskyi, A., Dmytriieva, O., Neronov, S., Plekhova, G. et al.; Shyshatskyi, A. (Ed.) (2024). Information and control systems: modelling and optimizations. Kharkiv: TECHNOLOGY CENTER PC, 180. https://doi.org/10.15587/978-617-8360-04-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salman Rasheed Owaid, Svitlana Kashkevich, Andrii Shyshatskyi, Hryhorii Radzivilov, Oleg Sova, Artur Zarubenko, Andrii Veretnov, Roman Lazuta, Oleksii Noskov, Anastasiia Voznytsia

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





