Stable sound wave generation in weakly ionized air medium

Authors

  • Максим Викторович Чижов Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026, Ukraine
  • Владимир Леонидович Кулинский Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026, Ukraine
  • Владимир Ильич Маренков Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026, Ukraine
  • Максим Викторович Ейнгорн North Carolina Central University Fayetteville Street. 1801, Durham, NC 27707, USA, United States

DOI:

https://doi.org/10.15587/1729-4061.2014.32431

Keywords:

sound wave generation in weakly ionized air medium, ionic loudspeaker, acoustic monopole, diaphragmless loudspeaker

Abstract

Results of experimental and theoretical research of the laboratory prototype of "diaphragmless" non-thermal electroacoustic transducer of original design, working as a broadband acoustic monopole are discussed.

Radiation patterns of acoustic emission, current-voltage characteristic of corona discharge at the given electrode geometry were investigated, based on which a theoretical scheme for calculating the acoustic emission power depending on the magnitude of the potential difference between the electrodes was built. The calculation of the basic characteristics of the loudspeaker was performed within the quasi-stationary approximation using a standard three-component hydrodynamic model of weakly ionized gas, supplemented by the equations of chemical kinetics.

It is shown that the sound generation process is a scalar effect, arising due to the gas ionization degree modulation.

The theoretical model, developed in the paper is the basis for a detailed simulation of sound generation processes, and possible improvement of the proposed design of so-called "ionic loudspeaker".

Author Biographies

Максим Викторович Чижов, Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026

Graduate

Department of Thermophysics

Владимир Леонидович Кулинский, Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026

Graduate

Department of Thermophysics

Владимир Ильич Маренков, Odessa National University. II Mechnikov st. Aristocratic 2d .. Odessa Ukraine, 65026

Doctor of Physical and Mathematical Sciences, Professor

Department of Thermophysics

Максим Викторович Ейнгорн, North Carolina Central University Fayetteville Street. 1801, Durham, NC 27707, USA

Candidate of Physical and Mathematical Sciences

References

  1. McLachlan, N. W. (1934). Loud speakers. Theory, performance, testing and design. Oxford: The Clarendon Press, 399.
  2. Krichtafovitch, I. A., Karpov, S. V., Jewell-Larsen, N. E. (2008). EFA Loudspeakers. Proc. ESA Annual Meeting on Electrostatics, Paper A2, 1–7.
  3. Kiichiro, M. (1973). Sound sources with corona discharges. The Journal of the Acoustical Society of America, 54 (2), 494–498. doi: 10.1121/1.1913605
  4. Lim, M. K. (1981). A corona-type point source for model studies in acoustics. Applied Acoustics, 14 (4), 245–252. doi: 10.1016/0003-682x(81)90020-7
  5. Bastien, F. (1987). Acoustics and gas discharges: applications to loudspeakers. Journal of Physics D: Applied Physics, 20 (12), 1547–1557. doi: 10.1088/0022-3727/20/12/001
  6. Béquin, Ph., Montembault, V., Herzog, Ph. (2001). Modelling of negative point-to-plane corona loudspeaker. The European Physical Journal – Applied Physics, 15 (01), 57–67. doi: 10.1051/epjap:2001167
  7. Béquin, Ph., Castor, K., Herzog, Ph., Montembault, V. (2007). Modeling plasma loudspeakers. The Journal of the Acoustical Society of America, 121 (4), 1960–1970. doi: 10.1121/1.2697201
  8. Mazzola, M. S., Molen, G. M. (1987). Modeling of a dc glow plasma loudspeaker. The Journal of the Acoustical Society of America, 81 (6), 1972–1978. doi: 10.1121/1.394762
  9. Fransson, F., Jansson, E. V. (1971). Properties of the stl-ionophone transducer. Quarterly Progress and Status Report, 6 (2), 27–30.
  10. Fransson, F. J. (1975). Stl–ionophone: Transducer properties and construction. The Journal of the Acoustical Society of America, 58 (4), 910–915. doi: 10.1121/1.380743
  11. Chizhov, M. V., Yn, C. М. (2011). Ukrainian declarative patent for an invention 96912. Device for generating acoustic waves; H04R 23/00/– № a 2011 07018; Statement 03.06.2011; Published 25.08.2011, bulletin № 16
  12. Bondar, H., Bastien, F. (1986). Effect of neutral fluid velocity on direct conversion from electrical to fluid kinetic energy in an electro-fluid-dynamics (efd) device. Journal of Physics D: Applied Physics, 19 (9), 1657–1663. doi: 10.1088/0022-3727/19/9/011
  13. Kawamoto, H., Yasuda, H., Umezu, S. (2006). Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system. Journal of Electrostatics, 64 (6), 400–407. doi: 10.1016/j.elstat.2005.10.023
  14. Dyakov, A. F., Bobrov, Yu. K., Sorokin, A. V., Yurgelenas.,Yu. V. (1999). Fizicheskie osnovyelektricheskogo proboya gazov. MEI.
  15. Raizer, Y. P. (1991). Gas Discharge Physics. Springer, corrected edition.
  16. Aleksandrov, N. L., Konchakov, A. M., Napartovich, A. I., Starostin, A. N. (1989). Novel mechanism of sound amplification in a weakly ionized gas. JETP, 68, 933–936.
  17. Elinson, M. I., Vasil’ev, G. F. (1958). Field Emission. Gos. ed. Sci. lit,Moscow.
  18. Latham, V. (1995). High Voltage Vacuum Insulation: Basic Concepts and Technological Practice. Academic Press, 1 edition.

Published

2014-12-19

How to Cite

Чижов, М. В., Кулинский, В. Л., Маренков, В. И., & Ейнгорн, М. В. (2014). Stable sound wave generation in weakly ionized air medium. Eastern-European Journal of Enterprise Technologies, 6(5(72), 45–51. https://doi.org/10.15587/1729-4061.2014.32431

Issue

Section

Applied physics