Improving accuracy of the spectral-correlation direction finding and delay estimation using machine learning

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.327021

Keywords:

spectral-correlation analysis, radio signal monitoring, signal parameter prediction, direction finding accuracy

Abstract

The object of the study is the process of radio signal delay and direction estimation using digital spectral-correlation analysis enhanced by machine learning. This process is essential for high-accuracy direction finding in electromagnetic monitoring systems. The problem addressed is the low adaptability and insufficient accuracy of traditional direction finding methods under variable signal conditions, especially due to manual parameter selection and the computational complexity of correlation processing.

The essence of the obtained results is a machine learning-based method for predicting radio signal parameters (delay and angle), which reduced the standard deviation of direction finding estimates to 0.08–0.026° and delay estimation error to 1.5–14.8 μs across a signal-to-noise ratio range of 9 to 37 dB. These results are supported by averaging over 1000 realizations using Monte Carlo simulation, confirming their stability under noise. Due to its distinctive features, the proposed solution addressed the problem by enabling automated selection of processing parameters through a trained neural network that adapts to nonlinear signal characteristics, minimizing the need for manual adjustment or exhaustive search.

These results are explained by the model’s ability to identify hidden dependencies between signal parameters and processing outcomes, enabling adaptive behavior and reduced deviations. Although no computational complexity assessment is provided, prediction-based parameter estimation is expected to improve processing speed in future implementations. The results can be applied in real-time electromagnetic monitoring, radio surveillance, and defense applications, especially under limited computing resources or varying noise conditions

Author Biographies

Nurzhigit Smailov, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

Doctor PhD

Department of Radio Engineering, Electronics and Space Technologies

Vitaliy Tsyporenko, Zhytomyr Polytechnic State University

PhD

Department of Biomedical Engineering and Telecommunications

Zhomart Ualiyev, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

Doctor PhD

Department of Higher Mathematics and Modeling

Аіnur Issova, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov

Candidate of Physical and Mathematical Sciences

Zhandos Dosbayev, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

Doctor PhD

Department of Radio Engineering, Electronics and Space Technologies

Yerlan Tashtay, Satbayev University

PhD, Head of Department

Department of Electronics, Telecommunications, and Space Technologies

Maigul Zhekambayeva, Satbayev University

PhD

Department of Software Engineering

Temirlan Alimbekov, Satbayev University

Department of Computer Science and Sofware Engineering

Rashida Kadyrova, Almaty Academy of Internal Affairs of the Republic of Kazakhstan named after Makana Esbulatova

Department of Cyber Security and Information Technology

Akezhan Sabibolda, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Almaty Academy of Internal Affairs of the Republic of Kazakhstan named after Makana Esbulatova

PhD

Department of Cyber Security and Information Technology

References

  1. Rembovskij, A. M. (2015). Radio monitoring – tasks, methods, means. Moscow: Hot line. Telekom, 640.
  2. Tsyporenko, V., Tsyporenko, V., Andreiev, O., Sabibolda, A. (2021). Digital spectral correlation method for measuring radio signal reception delay and direction finding. Technical Engineering, 2 (88), 113–121. https://doi.org/10.26642/ten-2021-2(88)-113-121
  3. Elbir, A. M. (2017). Direction Finding in the Presence of Direction-Dependent Mutual Coupling. IEEE Antennas and Wireless Propagation Letters, 16, 1541–1544. https://doi.org/10.1109/lawp.2017.2647983
  4. Tsyporenko, V. V., Tsyporenko, V. G., Nikitczuk, T. M. (2019). Optimization of direct digital method of correlative-interferometric direction finding with reconstruction of spatial analytical signal. Radio Electronics, Computer Science, Control, 3, 15–24. https://doi.org/10.15588/1607-3274-2019-3-2
  5. Duplouy, J., Morlaas, C., Aubert, H., Potier, P., Pouliguen, P. (2019). Wideband Vector Antenna for Dual-Polarized and Three-Dimensional Direction-Finding Applications. IEEE Antennas and Wireless Propagation Letters, 18 (8), 1572–1575. https://doi.org/10.1109/lawp.2019.2923531
  6. Lee, J.-H., Kim, J.-K., Ryu, H.-K., Park, Y.-J. (2018). Multiple Array Spacings for an Interferometer Direction Finder With High Direction-Finding Accuracy in a Wide Range of Frequencies. IEEE Antennas and Wireless Propagation Letters, 17 (4), 563–566. https://doi.org/10.1109/lawp.2018.2803107
  7. Xie, X., Xu, Z. (2018). Direction Finding of BPSK Signals Using Time-Modulated Array. IEEE Microwave and Wireless Components Letters, 28 (7), 618–620. https://doi.org/10.1109/lmwc.2018.2834523
  8. Cai, J., Zhou, H., Huang, W., Wen, B. (2021). Ship Detection and Direction Finding Based on Time-Frequency Analysis for Compact HF Radar. IEEE Geoscience and Remote Sensing Letters, 18 (1), 72–76. https://doi.org/10.1109/lgrs.2020.2967387
  9. He, C., Liang, X., Li, Z., Geng, J., Jin, R. (2015). Direction Finding by Time-Modulated Array With Harmonic Characteristic Analysis. IEEE Antennas and Wireless Propagation Letters, 14, 642–645. https://doi.org/10.1109/lawp.2014.2373432
  10. Rosado-Sanz, J., Jarabo-Amores, M. P., De la Mata-Moya, D., Rey-Maestre, N. (2022). Adaptive Beamforming Approaches to Improve Passive Radar Performance in Sea and Wind Farms’ Clutter. Sensors, 22 (18), 6865. https://doi.org/10.3390/s22186865
  11. Smailov, N., Tsyporenko, V., Sabibolda, A., Tsyporenko, V., Kabdoldina, A., Zhekambayeva, M. et al. (2023). Improving the accuracy of a digital spectral correlation-interferometric method of direction finding with analytical signal reconstruction for processing an incomplete spectrum of the signal. Eastern-European Journal of Enterprise Technologies, 5 (9 (125)), 14–25. https://doi.org/10.15587/1729-4061.2023.288397
  12. Sabibolda, A., Tsyporenko, V., Smailov, N., Tsyporenko, V., Abdykadyrov, A. (2024). Estimation of the Time Efficiency of a Radio Direction Finder Operating on the Basis of a Searchless Spectral Method of Dispersion-Correlation Radio Direction Finding. Advances in Asian Mechanism and Machine Science, 62–70. https://doi.org/10.1007/978-3-031-67569-0_8
  13. Kuttybayeva, A., Sabibolda, A., Kengesbayeva, S., Baigulbayeva, M., Amir, A., Sekenov, B. (2024). Investigation of a Fiber Optic Laser Sensor with Grating Resonator Using Mirrors. 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), 709–711. https://doi.org/10.1109/elcon61730.2024.10468264
  14. Smailov, N., Tsyporenko, V., Sabibolda, A., Tsyporenko, V., Abdykadyrov, A., Kabdoldina, A. et al. (2024). Usprawnienie cyfrowego korelacyjno-interferometrycznego ustalania kierunku za pomocą przestrzennego sygnału analitycznego. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 43–48. https://doi.org/10.35784/iapgos.6177
  15. Abdykadyrov, A., Smailov, N., Sabibolda, A., Tolen, G., Dosbayev, Z., Ualiyev, Z., Kadyrova, R. (2024). Optimization of distributed acoustic sensors based on fiber optic technologies. Eastern-European Journal of Enterprise Technologies, 5 (5 (131)), 50–59. https://doi.org/10.15587/1729-4061.2024.313455
  16. Marxuly, S., Abdykadyrov, A., Chezhimbayeva, K., Smailov, N. (2024). Study of the ozone control process using electronic sensors. Informatyka Automatyka Pomiary W Gospodarce I Ochronie Środowiska, 14 (4), 38–45. https://doi.org/10.35784/iapgos.6051
  17. Podchashynskyi, Y., Luhovykh, O., Tsyporenko, V., Tsyporenko, V. (2021). Devising a method for measuring the motion parameters of industrial equipment in the quarry using adaptive parameters of a video sequence. Eastern-European Journal of Enterprise Technologies, 6 (9 (114)), 32–46. https://doi.org/10.15587/1729-4061.2021.248624
  18. Zahoruiko, L., Martianova, T., Al-Hiari, M., Polovenko, L., Kovalchuk, M., Merinova, S. et al. (2024). Model matematyczny i struktura sieci neuronowej do wykrywania cyberataków na systemy teleinformatyczne i komunikacyjne. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 49–55. https://doi.org/10.35784/iapgos.6155
  19. Mummaneni, S., Dodda, P., Ginjupalli, N. D. (2024). Inspirowane kojotami podejście do przewidywania tocznia rumieniowatego układowego z wykorzystaniem sieci neuronowych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (2), 22–27. https://doi.org/10.35784/iapgos.6077
  20. Rayavarapu, S. M., Tammineni, S. P., Gottapu, S. R., & Singam, A. (2024). Przegląd generatywnych sieci przeciwstawnych dla zastosowań bezpieczeństwa. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (2), 66–70. https://doi.org/10.35784/iapgos.5778
  21. Stelmakh, N., Mandrovska, S., Galagan, R. (2024). Zastosowanie sieci neuronowych resnet-152 do analizy obrazów z uav do wykrywania pożaru. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (2), 77–82. https://doi.org/10.35784/iapgos.5862
  22. Lyfar, V., Lyfar, O., Zynchenko, V. (2024). Metody inteligentnej analizy danych z wykorzystaniem sieci neuronowych w diagnozie. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (2), 109–112. https://doi.org/10.35784/iapgos.5746
  23. Limtrakul, S., Wetweerapong, J. (2023). An enhanced differential evolution algorithm with adaptive weight bounds for efficient training of neural networks. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 13 (1), 4–13. https://doi.org/10.35784/iapgos.3366
  24. Bilynsky, Y., Nikolskyy, A., Revenok, V., Pogorilyi, V., Smailova, S., Voloshina, O., Kumargazhanova, S. (2023). Convolutional neural networks for early computer diagnosis of child dysplasia. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 13 (2), 56–63. https://doi.org/10.35784/iapgos.3499
  25. Michalska-Ciekańska, M. (2022). Głębokie sieci neuronowe dla diagnostyki zmian skórnych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 12 (3), 50–53. https://doi.org/10.35784/iapgos.3042
  26. Gęca, J. (2020). Performance comparison of machine learning algorithms for predictive maintenance. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 10 (3), 32–35. https://doi.org/10.35784/iapgos.1834
  27. Smailov, N., Batyrgaliyev, A., Akhmediyarova, A., Seilova, N., Koshkinbayeva, M., Baigulbayeva, M. et al. (2020). Approaches to Evaluating the Quality of Masking Noise Interference. International Journal of Electronics and Telecommunications, 67 (01), 59–64. https://doi.org/10.24425/ijet.2021.135944
  28. Li, R., Zhao, L., Liu, C., Bi, M. (2022). Strongest Angle-of-Arrival Estimation for Hybrid Millimeter Wave Architecture with 1-Bit A/D Equipped at Transceivers. Sensors, 22 (9), 3140. https://doi.org/10.3390/s22093140
  29. Wang, J., Wang, P., Zhang, R., Wu, W. (2022). SDFnT-Based Parameter Estimation for OFDM Radar Systems with Intercarrier Interference. Sensors, 23 (1), 147. https://doi.org/10.3390/s23010147
  30. Ren, B., Wang, T. (2022). Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar. Sensors, 22 (18), 6917. https://doi.org/10.3390/s22186917
  31. Jwo, D.-J., Cho, T.-S., Demssie, B. A. (2025). Dynamic Modeling and Its Impact on Estimation Accuracy for GPS Navigation Filters. Sensors, 25 (3), 972. https://doi.org/10.3390/s25030972
  32. Smailov, N., Uralova, F., Kadyrova, R., Magazov, R., Sabibolda, A. (2025). Optymalizacja metod uczenia maszynowego do deanonimizacji w sieciach społecznościowych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (1), 101–104. https://doi.org/10.35784/iapgos.7098
  33. Wang, H., Yu, Z., Wen, F. (2024). Computationally Efficient Direction Finding for Conformal MIMO Radar. Sensors, 24 (18), 6065. https://doi.org/10.3390/s24186065
Improving accuracy of the spectral-correlation direction finding and delay estimation using machine learning

Downloads

Published

2025-04-30

How to Cite

Smailov, N., Tsyporenko, V., Ualiyev, Z., Issova А., Dosbayev, Z., Tashtay, Y., Zhekambayeva, M., Alimbekov, T., Kadyrova, R., & Sabibolda, A. (2025). Improving accuracy of the spectral-correlation direction finding and delay estimation using machine learning. Eastern-European Journal of Enterprise Technologies, 2(5 (134), 15–24. https://doi.org/10.15587/1729-4061.2025.327021

Issue

Section

Applied physics