Ensuring sustainable use of generative artificial intelligence by enterprises based on resource consumption optimization

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.330586

Keywords:

generative artificial intelligence, GPT-models, sustainable development, energy efficiency, ecological footprint

Abstract

The object of this study is the impact of using generative artificial intelligence (AI) on the resource efficiency of enterprises in the context of sustainable development. The issue relates to the fact that despite the ability of generative AI to optimize management and production processes, its use is accompanied by an increase in electricity consumption (grid, mostly non-renewable) and water, which creates new environmental risks.

This paper systematizes existing methods for indirectly estimating energy and water consumption in the process of generative AI model functioning. Based on this, an approach to assessing the ecological footprint of generative AI has been devised, which takes into account four indicators such as query length, complexity, task type, and industry. A special feature of the proposed approach is a combination of quantitative analysis, regression modeling, and query classification to assess resource intensity.

An empirical study has shown that high-volume queries (analytical and creative) generate significantly higher resource consumption (2.1–2.3 Wh of electricity and more than 0.8 liters of water) while factual queries create a minimal load (< 0.12 Wh). This difference is explained by the complexity of information processing and the involvement of significant computing power in cloud data centers.

To evaluate the feasibility of AI implementation, a sustainability index has been proposed to assess the balance between the efficiency achieved and resources spent. The proposed approach could be used by enterprises under conditions of limited access to energy and water resources, in particular during post-war recovery and implementation of the principles of sustainable development

Author Biographies

Dmytro Antoniuk, National University “Zaporizhzhia Polytechnic”

Doctor of Economic Sciences, Professor

Department of Management and Administration

Oleksandr Koliada, National University “Zaporizhzhia Polytechnic”

PhD Student

Department of Management and Administration

References

  1. Fang, B., Yu, J., Chen, Z., Osman, A. I., Farghali, M., Ihara, I. et al. (2023). Artificial intelligence for waste management in smart cities: a review. Environmental Chemistry Letters, 21 (4), 1959–1989. https://doi.org/10.1007/s10311-023-01604-3
  2. Priore, P., Gómez, A., Pino, R., Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning: An updated review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 28 (1), 83–97. https://doi.org/10.1017/s0890060413000516
  3. Li, S., Yu, T., Cao, X., Pei, Z., Yi, W., Chen, Y., Lv, R. (2021). Machine learning‐based scheduling: a bibliometric perspective. IET Collaborative Intelligent Manufacturing, 3 (2), 131–146. https://doi.org/10.1049/cim2.12004
  4. Wen, X., Shen, Q., Wang, S., Zhang, H. (2024). Leveraging AI and Machine Learning Models for Enhanced Efficiency in Renewable Energy Systems. Applied and Computational Engineering, 96 (1), 107–112. https://doi.org/10.54254/2755-2721/96/20241416
  5. Kuzior, A., Sira, M., Brożek, P. (2023). Use of Artificial Intelligence in Terms of Open Innovation Process and Management. Sustainability, 15 (9), 7205. https://doi.org/10.3390/su15097205
  6. Huang, M.-H., Rust, R. T. (2020). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49 (1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
  7. Lu, M. (2025). Ranked: The Top 25 Countries With the Most Data Centers. Visual Capitalist. Available at: https://www.visualcapitalist.com/ranked-the-top-25-countries-with-the-most-data-centers/?utm_source=
  8. Kiev Data Centers. DataCenter Map. Available at: https://www.datacentermap.com/ukraine/kiev/?utm_source=
  9. Wang, Q., Zhang, F., Li, R. (2024). Artificial intelligence and sustainable development during urbanization: Perspectives on AI R&D innovation, AI infrastructure, and AI market advantage. Sustainable Development, 33 (1), 1136–1156. https://doi.org/10.1002/sd.3150
  10. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S. et al. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11 (1). https://doi.org/10.1038/s41467-019-14108-y
  11. Olatunde, T., Okwandu, A., Akande, D., Sikhakhane, Z. (2024). Reviewing the role of artificial intelligence in energy efficiency optimization. Engineering Science & Technology Journal, 5 (4), 1243–1256. https://doi.org/10.51594/estj.v5i4.1015
  12. Tabbakh, A., Al Amin, L., Islam, M., Mahmud, G. M. I., Chowdhury, I. K., Mukta, M. S. H. (2024). Towards sustainable AI: a comprehensive framework for Green AI. Discover Sustainability, 5 (1). https://doi.org/10.1007/s43621-024-00641-4
  13. Zavrazhnyi, K. Yu. (2023). Vykorystannia shtuchnoho intelektu ta vplyv tsyfrovizatsiyi na stalyi rozvytok korporatyvnoho biznesu. Akademichni viziyi, 26. Available at: https://academy-vision.org/index.php/av/article/view/754
  14. Sukhodolia, O. M. (2022). Shtuchnyi intelekt v enerhetytsi. Kyiv: NISD, 49. https://doi.org/10.53679/NISS-analytrep.2022.09
  15. Mashkov, O., Abidov, S., Ivashchenko, T., Ovodenko, T., Pechenyi, V. (2023). Prospects and problems of creating intelligent support systems for environmental decision-making. Ecological Sciences, 1, 168–174. https://doi.org/10.32846/2306-9716/2023.eco.1-46.28
  16. Udendhran, R., Sasikala, R., Nishanthi, R., Vasanthi, J. (2023). Smart Energy Consumption Control in Commercial Buildings Using Machine Learning and IOT. E3S Web of Conferences, 387, 02003. https://doi.org/10.1051/e3sconf/202338702003
  17. Hamid, M., Ganne, A. (2023). Artificial intelligence in energy markets and power systems. International Research Journal of Modernization in Engineering Technology and Science, 5 (4). https://doi.org/10.56726/irjmets35943
  18. Burki, A. K., Ahamed Mafaz, M. N., Ahmad, Z., Zulfaka, A., Bin Isa, M. Y. (2024). Artificial Intelligence and Environmental Sustainability: Insights from PLS-SEM on Resource Efficiency and Carbon Emission Reduction. OPSearch: American Journal of Open Research, 3 (10), 277–288. https://doi.org/10.58811/opsearch.v3i10.141
  19. Lin, B., Zhu, Y. (2024). Latent Information in the Evolving Energy Structure. Journal of Global Information Management, 32 (1), 1–21. https://doi.org/10.4018/jgim.358476
  20. Liu, L., Yang, K., Fujii, H., Liu, J. (2021). Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel. Economic Analysis and Policy, 70, 276–293. https://doi.org/10.1016/j.eap.2021.03.002
  21. Strubell, E., Ganesh, A., McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. https://doi.org/10.18653/v1/p19-1355
  22. Li, P., Yang, J., Islam, M. A., Ren, S. (2023). Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models. arXiv. https://doi.org/10.48550/arXiv.2304.03271
  23. Castaño, J., Martínez-Fernández, S., Franch, X., Bogner, J. (2023). Exploring the Carbon Footprint of Hugging Face’s ML Models: A Repository Mining Study. 2023 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 1–12. https://doi.org/10.1109/esem56168.2023.10304801
  24. Verdecchia, R., Cruz, L., Sallou, J., Lin, M., Wickenden, J., Hotellier, E. (2022). Data-Centric Green AI An Exploratory Empirical Study. 2022 International Conference on ICT for Sustainability (ICT4S), 35–45. https://doi.org/10.1109/ict4s55073.2022.00015
  25. Ghadi, Y. Y., Mazhar, T., Shah, S. F. A., Haq, I., Ahmad, W., Ouahada, K., Hamam, H. (2023). Integration of federated learning with IoT for smart cities applications, challenges, and solutions. PeerJ Computer Science, 9, e1657. https://doi.org/10.7717/peerj-cs.1657
  26. Zastosuvannia shtuchnoho intelektu: sfery, pryklady, perevahy ta trudnoshchi (2024). Sigma Software University. Available at: https://university.sigma.software/where-is-artificial-intelligence-used/
  27. Pidhaina, Ye. (2024). Amazon, Uber, Spotify, JP Morgan, Netflix, Tesla toshcho: uspishni ta provalni keisy zaluchennia shtuchnoho intelektu. Mind. Available at: https://mind.ua/publications/20275247-amazon-uber-spotify-jp-morgan-netflix-tesla-toshcho-uspishni-ta-provalni-kejsi-zaluchennya-shtuchnogo
  28. Kuzomko, V., Buranhulova, V., Buranhulova, V. (2021). Possibilities of using artificial intelligence in the activities of modern enterprises. Economy and Society, 32. https://doi.org/10.32782/2524-0072/2021-32-67
  29. Lacoste, A., Luccioni, A. S., Schmidt, V., Dandres, T. (2019). Quantifying the Carbon Emissions of Machine Learning. arXiv. https://doi.org/10.48550/arXiv.1910.09700
  30. ML CO2 Impact. Available at: https://mlco2.github.io/impact/#home
  31. García-Martín, E., Rodrigues, C. F., Riley, G., Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88. https://doi.org/10.1016/j.jpdc.2019.07.007
  32. Krystalakos, O., Nalmpantis, C., Vrakas, D. (2018). Sliding Window Approach for Online Energy Disaggregation Using Artificial Neural Networks. Proceedings of the 10th Hellenic Conference on Artificial Intelligence, 1–6. https://doi.org/10.1145/3200947.3201011
  33. Desislavov, R., Martínez-Plumed, F., Hernández-Orallo, J. (2023). Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning. Sustainable Computing: Informatics and Systems, 38, 100857. https://doi.org/10.1016/j.suscom.2023.100857
Ensuring sustainable use of generative artificial intelligence by enterprises based on resource consumption optimization

Downloads

Published

2025-06-30

How to Cite

Antoniuk, D., & Koliada, O. (2025). Ensuring sustainable use of generative artificial intelligence by enterprises based on resource consumption optimization. Eastern-European Journal of Enterprise Technologies, 3(13 (135), 68–77. https://doi.org/10.15587/1729-4061.2025.330586

Issue

Section

Transfer of technologies: industry, energy, nanotechnology