Development of the method of multi-criteria evaluation of hierarchical systems
DOI:
https://doi.org/10.15587/1729-4061.2025.331018Keywords:
system of indicators, vulnerability tree, penguin swarm algorithm, destabilizing factors, military (force) groupingAbstract
Multicriteria evaluation offers undeniable advantages over single-criterion assessment methods. The object of the study is hierarchical systems. The subject of the study is the process of multicriteria evaluation of the state of hierarchical systems. A method for multicriteria evaluation of hierarchical systems is proposed. The originality of the method lies in the application of additional advanced procedures that allow for the following:
– verification of input data and refinement of inter-element connections within the hierarchical system using an enhanced penguin swarm algorithm. This minimizes the risk of errors resulting from incorrect data input in the assessment of the operational military (force) grouping;
– description of external and internal factors affecting the hierarchical system subject to multicriteria evaluation through the use of fuzzy cognitive models;
– adaptation to the type of hierarchical system via multilevel adjustment of the system of indicators and evaluation criteria;
– reduction of uncertainty through the use of interval-valued Pythagorean fuzzy sets, thereby improving the reliability of multicriteria assessment of hierarchical system states;
– identification of the most vulnerable elements within the hierarchical system using a fault tree analysis;
– adaptation of the membership function type depending on the system’s available computational resources, which ensures compatibility with existing computational capacities.
An example of the method’s application is demonstrated through the multicriteria evaluation of an operational military (force) grouping. The proposed method provides an average improvement of 35% in accuracy and efficiency, while ensuring a high convergence rate of results at the level of 93.17%
References
- Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
- Wang, J., Neil, M., Fenton, N. (2020). A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Computers & Security, 89, 101659. https://doi.org/10.1016/j.cose.2019.101659
- Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta, A. F., Baldini, G. (2019). Risk-based automated assessment and testing for the cybersecurity certification and labelling of IoT devices. Computer Standards & Interfaces, 62, 64–83. https://doi.org/10.1016/j.csi.2018.08.003
- Henriques de Gusmão, A. P., Mendonça Silva, M., Poleto, T., Camara e Silva, L., Cabral Seixas Costa, A. P. (2018). Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory. International Journal of Information Management, 43, 248–260. https://doi.org/10.1016/j.ijinfomgt.2018.08.008
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. https://doi.org/10.1016/j.aci.2014.07.001
- Mohammad, A. (2020). Development of the concept of electronic government construction in the conditions of synergetic threats. Technology Audit and Production Reserves, 3 (2 (53)), 42–46. https://doi.org/10.15587/2706-5448.2020.207066
- Bodin, L. D., Gordon, L. A., Loeb, M. P., Wang, A. (2018). Cybersecurity insurance and risk-sharing. Journal of Accounting and Public Policy, 37 (6), 527–544. https://doi.org/10.1016/j.jaccpubpol.2018.10.004
- Cormier, A., Ng, C. (2020). Integrating cybersecurity in hazard and risk analyses. Journal of Loss Prevention in the Process Industries, 64, 104044. https://doi.org/10.1016/j.jlp.2020.104044
- Hoffmann, R., Napiórkowski, J., Protasowicki, T., Stanik, J. (2020). Risk based approach in scope of cybersecurity threats and requirements. Procedia Manufacturing, 44, 655–662. https://doi.org/10.1016/j.promfg.2020.02.243
- Perrine, K. A., Levin, M. W., Yahia, C. N., Duell, M., Boyles, S. D. (2019). Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transportation Research Part A: Policy and Practice, 120, 58–70. https://doi.org/10.1016/j.tra.2018.12.009
- Promyslov, V. G., Semenkov, K. V., Shumov, A. S. (2019). A Clustering Method of Asset Cybersecurity Classification. IFAC-PapersOnLine, 52 (13), 928–933. https://doi.org/10.1016/j.ifacol.2019.11.313
- Zarreh, A., Saygin, C., Wan, H., Lee, Y., Bracho, A. (2018). A game theory based cybersecurity assessment model for advanced manufacturing systems. Procedia Manufacturing, 26, 1255–1264. https://doi.org/10.1016/j.promfg.2018.07.162
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
- Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
- Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics And Energetics Of Great Egret And Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
- Litvinenko, O., Kashkevich, S., Shyshatskyi, A., Dmytriieva, O., Neronov, S., Plekhova, G. et al.; Shyshatskyi, A. (Ed.) (2024). Information and control systems: modelling and optimizations. Kharkiv: TECHNOLOGY CENTER PC, 180. https://doi.org/10.15587/978-617-8360-04-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oleg Sova, Oleksandr Stanovskyi, Taras Hurskyi, Valentyn Olshanskyi, Oleksandr Volkov, Serhii Shostak, Vitalii Bezuhlyi, Hryhorii Tikhonov, Olena Chaikovska, Leonid Razarionov

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





