Evaluating deep learning architectures for CO2 emissions forecasting: TCN, LSTM, and hybrid approaches with hyperparameter optimization

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.331523

Keywords:

CO2 prediction, deep learning, random search, Bayesian optimization, hyperparameter, accuracy

Abstract

The object of the study is CO2 emission prediction using deep learning models. The problem lies in developing accurate models capable of handling temporal dependencies and periodic patterns in CO2 data. To address this, three deep learning models – temporal convolutional network (TCN), long short-term memory (LSTM), and a hybrid TCN-LSTM are evaluated. These models are optimized using random search and Bayesian optimization. Results indicate that the Hybrid TCN-LSTM model, optimized via random search, performs best, achieving MAE: 1.0269, R2: 0.9305, and MAPE: 4.47%. TCN excels at capturing periodic patterns through dilated convolutions, while LSTM handles long-term dependencies. Their integration combines these strengths, improving accuracy. Optimal hyperparameters (learning rate: 0.000539, dropout rate: 0.5) enhance robustness. Random search outperforms Bayesian optimization in navigating complex search spaces and avoiding local optima. Key findings include the hybrid model's ability to address short-term periodicity and long-term trends, and Random Search’s reliability over Bayesian methods in this context. These insights advance time series forecasting methodologies and support robust predictive frameworks. Practically, they aid environmental policy, energy planning, and carbon trading by enabling data-driven decisions for emission reduction. However, implementation requires high-quality historical data and sufficient computational resources

Author Biographies

Roni Yunis, Universitas Sumatera Utara; Universitas Mikroskil

Doctoral Student of Computer Science, Lecture of Information Systems

Department of Computer Science

Department of Information Systems

Tengku Henny Febriana Harumy, Universitas Sumatera Utara

Doctor of Computer Science

Department of Computer Science

Syahril Efendi, Universitas Sumatera Utara

Doctor of Mathematics, Professor

Department of Computer Science

References

  1. DeAngelo, J., Azevedo, I., Bistline, J., Clarke, L., Luderer, G., Byers, E., Davis, S. J. (2021). Energy systems in scenarios at net-zero CO2 emissions. Nature Communications, 12 (1). https://doi.org/10.1038/s41467-021-26356-y
  2. Zhao, Y., Liu, L., Wang, A., Liu, M. (2023). A novel deep learning based forecasting model for carbon emissions trading: A comparative analysis of regional markets. Solar Energy, 262, 111863. https://doi.org/10.1016/j.solener.2023.111863
  3. Wei, X., Xu, Y. (2023). Research on carbon emission prediction and economic policy based on TCN-LSTM combined with attention mechanism. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1270248
  4. Chen, C., Guo, J., Zhang, L., Wu, X., Yang, Z. (2024). Robust multi-scale time series prediction for building carbon emissions with explainable deep learning. Energy and Buildings, 312, 114159. https://doi.org/10.1016/j.enbuild.2024.114159
  5. Hanifi, S., Cammarono, A., Zare-Behtash, H. (2024). Advanced hyperparameter optimization of deep learning models for wind power prediction. Renewable Energy, 221, 119700. https://doi.org/10.1016/j.renene.2023.119700
  6. Yin, H., Yin, Y., Li, H., Zhu, J., Xian, Z., Tang, Y. et al. (2025). Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression. Applied Energy, 377, 124357. https://doi.org/10.1016/j.apenergy.2024.124357
  7. Gong, M., Zhang, Y., Li, J., Chen, L. (2024). Dynamic spatial–temporal model for carbon emission forecasting. Journal of Cleaner Production, 463, 142581. https://doi.org/10.1016/j.jclepro.2024.142581
  8. Chen, J., Cui, Y., Zhang, X., Yang, J., Zhou, M. (2024). Temporal Convolutional Network for Carbon Tax Projection: A Data-Driven Approach. Applied Sciences, 14 (20), 9213. https://doi.org/10.3390/app14209213
  9. Rafi, M. A., Rodrigues, G. N., Mir, M. N. H., Bhuiyan, M. S. M., Mridha, M. F., Islam, M. R., Watanobe, Y. (2025). A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting. IEEE Open Journal of the Computer Society, 6, 380–391. https://doi.org/10.1109/ojcs.2025.3538579
  10. Liu, X., Yang, L., Du, J., Zhang, H., Hu, J., Chen, A., Lv, W. (2024). Carbon and air pollutant emissions forecast of China’s cement industry from 2021 to 2035. Resources, Conservation and Recycling, 204, 107498. https://doi.org/10.1016/j.resconrec.2024.107498
  11. Shaikh, A. K., Nazir, A., Khalique, N., Shah, A. S., Adhikari, N. (2023). A new approach to seasonal energy consumption forecasting using temporal convolutional networks. Results in Engineering, 19, 101296. https://doi.org/10.1016/j.rineng.2023.101296
  12. Li, Q., Ren, X., Zhang, F., Gao, L., Hao, B. (2024). A novel ultra-short-term wind power forecasting method based on TCN and Informer models. Computers and Electrical Engineering, 120, 109632. https://doi.org/10.1016/j.compeleceng.2024.109632
  13. Liu, S., Xu, T., Du, X., Zhang, Y., Wu, J. (2024). A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 302, 118122. https://doi.org/10.1016/j.enconman.2024.118122
  14. Tahir, M. F., Yousaf, M. Z., Tzes, A., El Moursi, M. S., El-Fouly, T. H. M. (2024). Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization. Renewable and Sustainable Energy Reviews, 200, 114581. https://doi.org/10.1016/j.rser.2024.114581
  15. Mahmoud, A., Mohammed, A. (2024). Leveraging Hybrid Deep Learning Models for Enhanced Multivariate Time Series Forecasting. Neural Processing Letters, 56 (5). https://doi.org/10.1007/s11063-024-11656-3
  16. Ritchie, H., Rosado, P., Roser, M. (2023). CO2 and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/co2-and-greenhouse-gas-emissions
  17. Barzani, A. R., Pahlavani, P., Ghorbanzadeh, O., Gholamnia, K., Ghamisi, P. (2024). Evaluating the Impact of Recursive Feature Elimination on Machine Learning Models for Predicting Forest Fire-Prone Zones. Fire, 7 (12), 440. https://doi.org/10.3390/fire7120440
  18. Wang, M., Qin, F. (2024). A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy, 26 (6), 467. https://doi.org/10.3390/e26060467
  19. Yao, J., Cai, Z., Qian, Z., Yang, B. (2023). A noval approach based on TCN-LSTM network for predicting waterlogging depth with waterlogging monitoring station. PLOS ONE, 18 (10), e0286821. https://doi.org/10.1371/journal.pone.0286821
  20. Dong, J., Liu, X., Su, R., Xu, H., Yu, T. (2025). TCN-Transformer Deep Network with Random Forest for Prediction of the Chemical Synthetic Ammonia Process. ACS Omega, 10 (2), 2269–2279. https://doi.org/10.1021/acsomega.4c09634
  21. Kong, F., Song, J., Yang, Z. (2022). A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network. Environmental Science and Pollution Research, 29 (43), 64983–64998. https://doi.org/10.1007/s11356-022-20393-w
  22. Xie, T., Huang, Z., Tan, T., Chen, Y. (2024). Forecasting China’s agricultural carbon emissions: A comparative study based on deep learning models. Ecological Informatics, 82, 102661. https://doi.org/10.1016/j.ecoinf.2024.102661
  23. Bi, J., Zhang, X., Yuan, H., Zhang, J., Zhou, M. (2022). A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM. IEEE Transactions on Automation Science and Engineering, 19 (3), 1869–1879. https://doi.org/10.1109/tase.2021.3077537
  24. Ankalaki, S., Thippeswamy, M. N. (2023). A novel optimized parametric hyperbolic tangent swish activation function for 1D-CNN: application of sensor-based human activity recognition and anomaly detection. Multimedia Tools and Applications, 83 (22), 61789–61819. https://doi.org/10.1007/s11042-023-15766-3
  25. Sunkari, S., Sangam, A., P., V. S., M., S., Raman, R., Rajalakshmi, R., S., T. (2024). A refined ResNet18 architecture with Swish activation function for Diabetic Retinopathy classification. Biomedical Signal Processing and Control, 88, 105630. https://doi.org/10.1016/j.bspc.2023.105630
  26. Harumy, T. H. F., Zarlis, M., Lydia, M. S., Efendi, S. (2023). A novel approach to the development of neural network architecture based on metaheuristic protis approach. Eastern-European Journal of Enterprise Technologies, 4 (4 (124)), 46–59. https://doi.org/10.15587/1729-4061.2023.281986
  27. Harumy, T. H. F., Br Ginting, D. S., Manik, F. Y., Alkhowarizmi, A. (2024). Developing an early detection model for skin diseases using a hybrid deep neural network to enhance health independence in coastal communities. Eastern-European Journal of Enterprise Technologies, 6 (9 (132)), 71–85. https://doi.org/10.15587/1729-4061.2024.313983
Evaluating deep learning architectures for CO2 emissions forecasting: TCN, LSTM, and hybrid approaches with hyperparameter optimization

Downloads

Published

2025-10-28

How to Cite

Yunis, R., Harumy, T. H. F., & Efendi, S. (2025). Evaluating deep learning architectures for CO2 emissions forecasting: TCN, LSTM, and hybrid approaches with hyperparameter optimization. Eastern-European Journal of Enterprise Technologies, 5(10 (137), 20–32. https://doi.org/10.15587/1729-4061.2025.331523