Design of a QKD protocol resistant to insider attacks in fully connected decentralized networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.337992

Keywords:

QKD, superposition, decentralization, blockchain, authentication, cybersecurity, trust-scoring, sybil-resistance, insider, replay

Abstract

This research focuses on enhancing the security of decentralized quantum key distribution (QKD) networks, where the absence of a central authority creates significant challenges such as malicious node infiltration, undetected key leakage, and unauthorized re-entry of revoked participants. Traditional authentication and trust models are insufficient for fully distributed QKD topologies, which remain highly vulnerable to insider threats and persistent compromise. To address these risks, let’s propose a layered security framework composed of three integrated components: Challenge-Response Authentication (CRA), Dynamic Trust Scoring (DTS), and Blockchain-Based Access Control (BBAC). CRA verifies node legitimacy through randomized quantum-state interactions, significantly reducing impersonation and quantum replay attacks. DTS implements real-time trust evaluation using anomaly detection to dynamically downgrade compromised nodes based on their behavioral deviations. BBAC maintains an immutable and tamper-proof trust ledger to block revoked nodes from re-entering under falsified identities and resists Sybil attacks using post-quantum cryptographic primitives. Simulation results confirm that the system improves detection rates of covert threats, ensures authentication latency under 10 ms, and reduces re-entry success to zero. The proposed architecture ensures long-term scalability and resilience, making it applicable to critical domains such as finance, national infrastructure, and military communication. This work contributes a novel, verifiable, and scalable solution to one of the most pressing open problems in distributed quantum networks

Author Biographies

Yenlik Begimbayeva, Kazakh National Research Technical University after K. I. Satbayev; Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

PhD, Senior Researcher

Department Cybersecurity, Information Processing and Storage

Department Head of the Cybersecurity

Temirlan Zhaxalykov, Kazakh National Research Technical University after K. I. Satbayev; Kazakh British Technical University

Master of Technical Sciences, Scientific Researcher

Department Cybersecurity, Information Processing and Storage

 

Amir Akhtanov, Kazakh National Research Technical University after K. I. Satbayev; Kazakh British Technical University

Engineer

Department Cybersecurity, Information Processing and Storage

School of Information Technology and Engineering

Ruslan Pashkevich, Kazakh National Research Technical University after K. I. Satbayev; Kazakh British Technical University

Engineer

Department Cybersecurity, Information Processing and Storage

Kazakh British Technical University

Olga Ussatova, Kazakh National Research Technical University after K. I. Satbayev; Institute of Information and Computational Technologies CS MSHE RK

PhD, Senior Researcher

Department Cybersecurity, Information Processing and Storage

Mukaddas Arshidinova, Kazakh National Research Technical University after K. I. Satbayev

PhD, Scientific Researcher

Department Cybersecurity, Information Processing and Storage

References

  1. Begimbayeva, Y., Ussatova, O., Zhaxalykov, T., Akhtanov, A., Pashkevich, R., Arshidinova, M. (2024). Development of superposition-based quantum key distribution protocol in decentralized full mesh networks. Eastern-European Journal of Enterprise Technologies, 6 (9 (132)), 39–46. https://doi.org/10.15587/1729-4061.2024.318588
  2. Begimbayeva, Y., Zhaxalykov, T., Makarov, M. V., Ussatova, O. (2024). Hybrid QKD Approach for Multi-User Quantum Networks: Practical Concept. 2024 20th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS), 44–48. https://doi.org/10.1109/opcs63516.2024.10720438
  3. Akhtar, N., Gilbert, A. (2024). Quantum-Enhanced Cryptography: Safeguarding Blockchain and IoT Ecosystems. ResearchGate. https://doi.org/10.13140/RG.2.2.23987.54567
  4. Nwaga, P., Idima, S. (2025). Post-Quantum Cryptographic Algorithms for Secure Communication in Decentralized Blockchain and Cloud Infrastructure. International Journal of Computer Applications Technology and Research. https://doi.org/10.7753/ijcatr1104.1008
  5. Mohammed, A. (2024). Cyber Security Implications of Quantum Computing: Shor’s Algorithm and Beyond. Innovative Computer Science Journal, 11 (1), 1-23. https://doi.org/10.5281/ZENODO.14759704
  6. Harinath, D., Bandi, M., Patil, A., Murthy, R. (2024). Enhanced Data Security and Privacy in IoT Devices Using Blockchain Technology and Quantum Cryptography. Journal of Systems Engineering and Electronics, 34 (6), 61–67. Available at: https://www.researchgate.net/publication/387495645_Enhanced_Data_Security_and_Privacy_in_IoT_devices_using_Blockchain_Technology_and_Quantum_Cryptography
  7. Ma, X., Wang, C., Li, Z., Zhu, H. (2021). Multi-Party Quantum Key Distribution Protocol with New Bell States Encoding Mode. International Journal of Theoretical Physics, 60 (4), 1328–1338. https://doi.org/10.1007/s10773-021-04758-4
  8. Ahmed, S., Roseth, T. (2025). Quantum Computing and Blockchain Synergy: A New Paradigm for Information Security. ResearchGate. https://doi.org/10.13140/RG.2.2.23987.54567
  9. Wu, F., Zhou, B., Song, J., Xie, L. (2025). Quantum-resistant blockchain and performance analysis. The Journal of Supercomputing, 81 (3). https://doi.org/10.1007/s11227-025-07018-y
  10. Radanliev, P. (2024). Artificial intelligence and quantum cryptography. Journal of Analytical Science and Technology, 15 (1). https://doi.org/10.1186/s40543-024-00416-6
  11. Ustimenko, V., Pustovit, O. (2025). On the Postquantum Protocol-Based Short Digital Signatures with Multivariate Maps Over Arithmetical Rings. Advances in Information and Communication. Cham: Springer, 688–699. https://doi.org/10.1007/978-3-031-84460-7_44
  12. Mangla, C., Rani, S., Atiglah, H. K. (2022). Secure Data Transmission Using Quantum Cryptography in Fog Computing. Wireless Communications and Mobile Computing, 2022, 1–8. https://doi.org/10.1155/2022/3426811
  13. Alshowkan, M., Evans, P. G., Starke, M., Earl, D., Peters, N. A. (2022). Authentication of smart grid communications using quantum key distribution. Scientific Reports, 12 (1). https://doi.org/10.1038/s41598-022-16090-w
  14. Popa, A.-B. (2024). Advancements in Quantum Communications: Security, Utility, Performance, and Adoption. [PhD Thesis Summary, National University of Science and Technology POLITEHNICA Bucharest]. Available at: https://docs.upb.ro/wp-content/uploads/2024/12/popa_alin_rezumat.pdf
  15. Yuan, Q., Yuan, H., Zhou, M., Wen, J., Li, J., Hao, B. (2025). A improved group quantum key distribution protocol with multi-party collaboration. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-024-84244-z
  16. Xiong, J., Shen, L., Liu, Y., Fang, X. (2025). Enhancing IoT security in smart grids with quantum-resistant hybrid encryption. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-024-84427-8
  17. da Silva, R. F. (2024). A blockchain architecture with quantum key distribution (QKD). International Journal of Blockchains and Cryptocurrencies, 5 (3), 161–170. https://doi.org/10.1504/ijbc.2024.143407
  18. Jarry, H., Olaoye, G., Frank, E., Brightwood, S., Olusegun, J. (2024). Practical Implementation of Quantum Cryptography in Network Security. ResearchGate. Available at: https://www.researchgate.net/publication/384884900
  19. Asha, H. P., Jingle, I. D. J. (2025). Secure Communication in Fog Nodes through Quantum Key Distribution. Advanced Network Technologies and Intelligent Computing. Springer, 32–46. https://doi.org/10.1007/978-3-031-83783-8_2
  20. Smailov, N., Akmardin, S., Ayapbergenova, A., Ayapbergenova, G., Kadyrova, R., Sabibolda, A. (2025). Analiza wydajności VLC w optycznych systemach komunikacji bezprzewodowej do zastosowań wewnętrznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 135–138. https://doi.org/10.35784/iapgos.6971
  21. Smailov, N., Orynbet, M., Nazarova, A., Torekhan, Z., Koshkinbayev, S., Yssyraiyl, K. et al. (2025). Optymalizacja pracy światłowodowych czujników w warunkach kosmicznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 130–134. https://doi.org/10.35784/iapgos.7200
  22. Kapalova, N., Algazy, K., Haumen, A., Sakan, K. (2023). Statistical analysis of the key scheduling of the new lightweight block cipher. International Journal of Electrical and Computer Engineering, 13 (6), 6817–6826. https://doi.org/10.11591/ijece.v13i6.pp6817-6826
Design of a QKD protocol resistant to insider attacks in fully connected decentralized networks

Downloads

Published

2025-08-29

How to Cite

Begimbayeva, Y., Zhaxalykov, T., Akhtanov, A., Pashkevich, R., Ussatova, O., & Arshidinova, M. (2025). Design of a QKD protocol resistant to insider attacks in fully connected decentralized networks. Eastern-European Journal of Enterprise Technologies, 4(9 (136), 43–50. https://doi.org/10.15587/1729-4061.2025.337992

Issue

Section

Information and controlling system