Identifying the features of mechanical and physicochemical characteristics of polyethersulfone membranes using electric field method for water filtration applications

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.339703

Keywords:

chemical resistance, electric field, mechanical properties, physicochemical characteristics, water filtration

Abstract

Electric-field assistant prepared polyethersulfone (PES) membranes were selected as the research object in this paper, aiming to address how to control membrane morphology, mechanical property and water permeation at the same time through a simple and environmentally friendly method for filtration purposes. Three PES membranes were fabricated and denoted as MP1 (25% PES), MP2 (30% PES) and MP3 (35% PES). Results indicated that the electric field can be used as a feasible method to design desired membrane structure and performance, SEM observations shows average pore sizes of 0.062–0.095 μm, AFM images showed MP1 has rough surface with larger pores, and MP3 has smoother surface with finer pores. Tensile test results as well indicated that the mechanical properties of MP were evidently reinforced when adding PES, and all tensile strengths increased monotonous with increase in the concentration of PES, wherein MP3 had the best maximum tensile strength (5.64907407 MPa). FTIR spectra were in agreement with characteristic PES functional groups, XRD showed an overall amorphous nature and some semi-crystalline order developed that was predominantly exerted along the vertical direction to the support surface with concentration within PES-rich membranes. These findings account for the reported compromise of the filtration performance, MP1 presented in NWP with best permeability (4.2012164.L.m⁻2·h⁻1). bar⁻1; MP3 had better mechanical stability to the detriment of flux. All tests results demonstrated how membranes can be tailored to maximize either permeability (MP1) or mechanical strength and selectivity (MP3), thereby allowing them to be employed as direct water filtration materials and could be utilized as a support for advanced composite membrane systems.

Author Biographies

Aneka Firdaus, Universitas Sriwijaya

Master of Engineering, Lecturer, Doctoral of Engineering Science, Doctoral Student

Department of Mechanical Engineering

Rahma Dani, Universitas Sriwijaya

Master of Physics Education, Master Student

Department of Physics Education

Muhammad Satya Putra Gantada, Universitas Sriwijaya

Master of Engineering, Master Student

Department of Mechanical Engineering

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Doctor of Philosophy (PhD), Professor

Advanced Membrane Technology Research Centre (AMTEC)

Nukman Nukman, Universitas Sriwijaya

Doctor of Engineering, Professor

Department of Mechanical Engineering

Irwin Bizzy, Universitas Sriwijaya

Doctor of Engineering, Professor

Department of Mechanical Engineering

Agung Mataram, Universitas Sriwijaya

Doctor of Philosophy (PhD), Associate Professor

Department of Mechanical Engineering

References

  1. Sriyanti, I., Dani, R., Almafie, M. R., Partan, R. U., Ap Idjan, M. K. N., Marlina, L. (2024). Optimization of diameter and mechanical properties of Polyacrylonitrile/ Polyvinylidene fluoride/ Graphene oxide coconut shell composite nanofiber mats with using response surface methodology. Case Studies in Chemical and Environmental Engineering, 10, 101030. https://doi.org/10.1016/j.cscee.2024.101030
  2. Sriyanti, I., Almafie, M. R., Nuha Ap Idjan, M. K., Dani, R., Solihah, I., Syafri, E. et al. (2025). Electrospun nanofiber membrane of Piper beetle loaded PVDF/PAN for medical mask applications: psychochemical characteristics, antibacterial and air filter test. Advanced Membranes, 5, 100149. https://doi.org/10.1016/j.advmem.2025.100149
  3. Idjan, M. K. N. A., Fatmawati, Almafie, M. R., Dani, R., Subandrate, Fudholi, A., Sriyanti, I. (2025). Physicochemical properties and antioxidant activity of PVP/CA membranes nanofiber loaded Arcangelisia flava L. Merr. stem extract using electrospinning technique. Next Materials, 8, 100839. https://doi.org/10.1016/j.nxmate.2025.100839
  4. Almafie, M. R., Fudholi, A., Dani, R., Idjan, M. K. N. A., Royani, I., Sriyanti, I. (2025). Effects of electrospinning parameters on polycaprolactone membrane diameter: An investigation utilizing central composite design and characterization. Results in Engineering, 25, 104002. https://doi.org/10.1016/j.rineng.2025.104002
  5. Jauhari, J., Almafie, M. R., Annisa, M., Mataram, A., Marlina, L., Idjan, M. K. N. A., Sriyanti, I. (2021). The morphology and scaling law model of polyvinylidene fluoride/carbon fiber using electrospinning technique. Journal of Physics: Conference Series, 1796 (1), 012076. https://doi.org/10.1088/1742-6596/1796/1/012076
  6. Mataram, A., Firdaus, A., Yanis, M., Dani, R., Nasir, S., Ismail, A. F., Othman, M. H. D. (2024). Synthesis of polyethersulfone/titanium dioxide membranes: analysis of morphology, mechanical properties, and water filtration performance. Eastern-European Journal of Enterprise Technologies, 6 (6 (132)), 16–25. https://doi.org/10.15587/1729-4061.2024.316523
  7. Nasution, M. S., Mataram, A., Yani, I., Septano, G. D. (2022). Characteristics of a PVDF–Tin Dioxide Membrane Assisted by Electric Field Treatment. Membranes, 12 (8), 772. https://doi.org/10.3390/membranes12080772
  8. Firdaus, A., Nasir, S., Dani, R., Prasatya, I. N., Ismail, A. F., Othman, M. H. D., Mataram, A. (2024). Synthesis of polyethersulfone membranes with the addition of silver nitrate for water filter applications. EUREKA: Physics and Engineering, 1, 121–131. https://doi.org/10.21303/2461-4262.2025.003394
  9. Ngoma, M. M., Mathaba, M., Moothi, K. (2021). Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane. Scientific Reports, 11 (1). https://doi.org/10.1038/s41598-021-03042-z
  10. Malatjie, K. I., Moutloali, R. M., Mishra, A. K., Mishra, S. B., Nxumalo, E. N. (2024). Photodegradation of imidacloprid insecticide using polyethersulfone membranes modified with iron doped cerium oxide. Journal of Applied Polymer Science, 141 (16). https://doi.org/10.1002/app.55255
  11. Barzegar, H., Shahsavarifar, S., Vatanpour, V., Masteri‐Farahani, M. (2021). Peroxopolyoxometalate nanoparticles blended PES membrane with improved hydrophilicity, anti‐fouling, permeability, and dye separation properties. Journal of Applied Polymer Science, 138 (31). https://doi.org/10.1002/app.50764
  12. Machodi, M. J., Daramola, M. O. (2020). Synthesis of PES and PES/chitosan membranes for synthetic acid mine drainage treatment. Water SA, 46 (1). https://doi.org/10.17159/wsa/2020.v46.i1.7891
  13. Ashori, A., Rafieyan, F., Kian, F., Jonoobi, M., Rezaei Tavabe, K. (2018). Effect of cellulose nanocrystals on performance of polyethersulfone nanocomposite membranes using electrospinning technique. Polymer Composites, 40 (S1). https://doi.org/10.1002/pc.25046
  14. Gohari, B., Abu-Zahra, N. (2018). Polyethersulfone Membranes Prepared with 3-Aminopropyltriethoxysilane Modified Alumina Nanoparticles for Cu(II) Removal from Water. ACS Omega, 3 (8), 10154–10162. https://doi.org/10.1021/acsomega.8b01024
  15. Elsayed, R., Teow, Y. H. (2024). Advanced functional polymer materials for biomedical applications. Journal of Applied Polymer Science, 142 (3). https://doi.org/10.1002/app.56391
  16. Rothermund, M. A., Koehler, S. J., Vaissier Welborn, V. (2024). Electric Fields in Polymeric Systems. Chemical Reviews, 124 (23), 13331–13369. https://doi.org/10.1021/acs.chemrev.4c00490
  17. Zhang, M., Hadi, M. K., Guo, D., Yao, T., Ran, F. (2024). Polyethersulfone mixed matrix membrane with abundant sponge pores for high‐separation performance with high flux retention and cycling stability. Journal of Applied Polymer Science, 141 (38). https://doi.org/10.1002/app.55979
  18. Grylewicz, A., Szymański, K., Darowna, D., Mozia, S. (2021). Influence of Polymer Solvents on the Properties of Halloysite-Modified Polyethersulfone Membranes Prepared by Wet Phase Inversion. Molecules, 26 (9), 2768. https://doi.org/10.3390/molecules26092768
  19. Sałacińska, A., Sienkiewicz, P., Szymański, K., Mozia, S. (2024). Polyethersulfone mixed matrix membranes modified with pore formers and Ag-titanate nanotubes: physicochemical characteristics and (bio)fouling study. Environmental Science and Pollution Research, 31 (55), 63876–63894. https://doi.org/10.1007/s11356-024-35461-6
  20. Ibrahim, Y., Hilal, N. (2024). Integration of Porous and Permeable Poly(ether sulfone) Feed Spacer onto Membrane Surfaces via Direct 3D Printing. ACS Applied Engineering Materials, 2 (4), 1094–1109. https://doi.org/10.1021/acsaenm.4c00086
  21. Huang, J., Tang, J., Zhang, J., Yang, L., Zhang, M. (2024). Waste mask supported PES membranes for efficient separation of oil/water emulsion. Polymer Engineering & Science, 64 (8), 3522–3529. https://doi.org/10.1002/pen.26777
  22. Butt, A. S., Qaiser, A. A., Abid, N., Mahmood, U. (2022). Novel polyaniline–polyethersulfone nanofiltration membranes: effect of in situ polymerization time on structure and desalination performance. RSC Advances, 12 (52), 33889–33898. https://doi.org/10.1039/d2ra05735b
  23. Güneş-Durak, S., Acarer-Arat, S., Tüfekci, M., Pir, İ., Üstkaya, Z., Öz, N., Tüfekci, N. (2024). Mechanical Enhancement and Water Treatment Efficiency of Nanocomposite PES Membranes: A Study on Akçay Dam Water Filtration Application. ACS Omega, 9 (29), 31556–31568. https://doi.org/10.1021/acsomega.4c01410
  24. Aumeier, B. M., Vollmer, F., Lenfers, S., Yüce, S., Wessling, M. (2021). Polymeric Membranes With Sufficient Thermo‐Mechanical Stability to Deploy Temperature Enhanced Backwash. Chemie Ingenieur Technik, 93 (9), 1417–1422. https://doi.org/10.1002/cite.202100020
  25. Matebese, F., Malomane, N., Motloutsi, M. L., Moutloali, R. M., Managa, M. (2025). Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance. Membranes, 15 (8), 239. https://doi.org/10.3390/membranes15080239
  26. Khoerunnisa, F., Sihombing, M., Nurhayati, M., Dara, F., Triadi, H. A., Nasir, M. et al. (2022). Poly(ether sulfone)-based ultrafiltration membranes using chitosan/ammonium chloride to enhance permeability and antifouling properties. Polymer Journal, 54 (4), 525–537. https://doi.org/10.1038/s41428-021-00607-7
  27. Meng, N., Mi, J., Chen, X., Liu, J., Zhu, H., Zheng, X. (2025). Preparation of Highly Antibacterial Polyethersulfone/Sulfonated Polyethersulfone Blend Composite Membrane and Research on Its Dye Separation Performance. Molecules, 30 (4), 781. https://doi.org/10.3390/molecules30040781
  28. Abu-Zurayk, R., Alnairat, N., Waleed, H., Khalaf, A., Abu-Dalo, D., Bozeya, A., Afaneh, R. (2025). Dual-Mode Integration of a Composite Nanoparticle in PES Membranes: Enhanced Performance and Photocatalytic Potential. Nanomaterials, 15 (14), 1055. https://doi.org/10.3390/nano15141055
  29. Ambarita, A. C., Mulyati, S., Arahman, N., Bilad, M. R., Shamsuddin, N., Ismail, N. M. (2021). Improvement of Properties and Performances of Polyethersulfone Ultrafiltration Membrane by Blending with Bio-Based Dragonbloodin Resin. Polymers, 13 (24), 4436. https://doi.org/10.3390/polym13244436
  30. Dani, R., Ismet, I., Marlina, L., Alisya, R., Aldi, M. A. K., Ludiansyah, A. et al. (2024). Synthesis of Activated Carbon from Coconut Shell and Recycled Styrofoam Nanofiber for Water Filtration. Makara Journal of Science, 28 (4), 357–369. https://doi.org/10.7454/mss.v28i4.2284
Identifying the features of mechanical and physicochemical characteristics of polyethersulfone membranes using electric field method for water filtration applications

Downloads

Published

2025-12-30

How to Cite

Firdaus, A., Dani, R., Gantada, M. S. P., Ismail, A. F., Nukman, N., Bizzy, I., & Mataram, A. (2025). Identifying the features of mechanical and physicochemical characteristics of polyethersulfone membranes using electric field method for water filtration applications. Eastern-European Journal of Enterprise Technologies, 6(6 (138), 14–27. https://doi.org/10.15587/1729-4061.2025.339703

Issue

Section

Technology organic and inorganic substances