An interpretable ECG-based approach for detecting hemodynamically significant arrhythmias using lightweight machine learning models

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.340493

Keywords:

ECG-based EF estimation, ejection fraction, machine learning, ECG classification, tQRS/tRR ratio

Abstract

The object of this study is the diagnostic process of patients with suspected hemodynamically significant arrhythmia in emergency and telemedicine settings, where rapid and interpretable decision support is required. The problem addressed is the limited access to echocardiographic assessment in emergency and resource-constrained environments, where interpretable and computationally efficient alternatives are urgently needed, particularly for mobile and field-deployed applications.

The main results show that machine learning models, such as XGBoost, achieved strong diagnostic performance (F1-score = 0.84, AUC = 0.91), while rule-based classifiers provided clinically interpretable accuracy. These results enabled partial compensation for the absence of echocardiography and contributed to reliable triage in acute and time-sensitive settings.

This effectiveness stems from key features of the method: reliance on interpretable ECG features (tQRS, tRR, HR, and EF derived from tQRS/tRR) and low computational complexity, setting it apart from more opaque deep learning methods. The results are explained by the strong correlation between these features and both electrical and mechanical heart function, enabling hemodynamic assessment without imaging. This supports clinical trust in the algorithm’s outputs.

The proposed approach is applicable in primary screening, emergency triage, telemedicine, and remote monitoring, combining accuracy with explainability and autonomy from imaging tools. Therefore, research on interpretable ECG-based detection of hemodynamically significant arrhythmias remains highly relevant, especially in settings lacking access to specialized diagnostics

Author Biographies

Ainur Bekbay, Satbayev University

Master of Technical Sciences, Senior Lecturer, Doctoral Student

Department of Robotics and Automation Equipment

Lashin Bazarbay, Satbayev University

Master of Technical Sciences, Senior Lecturer

Department of Robotics and Automation Equipment

Zhanar Bigaliyeva, Satbayev University

Master of Technical Sciences, Senior Lecturer

Department of Robotics and Automation Equipment

Vinera Baiturganova, Satbayev University

Master of Technical Sciences, Senior Lecturer

Department of Robotics and Automation Equipment

Akezhan Sabibolda, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Almaty Academy of Ministry of Internal Affairs

PhD

Department of Cyber Security and Information Technology

Yersaiyn Mailybayev, International University of Transportation and Humanities

PhD

Vice-Rector for Science and Digitalization

Nurzhigit Smailov, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

PhD, Senior Scientist

Department of Electronics, Telecommunication and Space Technologies

References

  1. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., Ng, A. Y. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25 (1), 65–69. https://doi.org/10.1038/s41591-018-0268-3
  2. Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A. et al. (2020). Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications, 11 (1). https://doi.org/10.1038/s41467-020-15432-4
  3. Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M., Ladewig, D. J., Satam, G. et al. (2019). Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine, 25 (1), 70–74. https://doi.org/10.1038/s41591-018-0240-2
  4. Eleyan, A., Alboghbaish, E. (2024). Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework. Computers, 13 (2), 55. https://doi.org/10.3390/computers13020055
  5. Goto, S., Kimura, M., Katsumata, Y., Goto, S., Kamatani, T., Ichihara, G. et al. (2019). Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients. PLOS ONE, 14 (1), e0210103. https://doi.org/10.1371/journal.pone.0210103
  6. Alamatsaz, N., Tabatabaei, L. S., Yazdchi, M., Payan, H., Alamatsaz, N., Nasimi, F. (2022). A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection. arXiv. https://doi.org/10.48550/arXiv.2209.00988
  7. Li, Q., Rajagopalan, C., Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117 (3), 435–447. https://doi.org/10.1016/j.cmpb.2014.09.002
  8. Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405, 81–90. https://doi.org/10.1016/j.ins.2017.04.012
  9. Samet, P. (1973). Hemodynamic Sequelae of Cardiac Arrhythmias. Circulation, 47 (2), 399–407. https://doi.org/10.1161/01.cir.47.2.399
  10. Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 415-416, 190–198. https://doi.org/10.1016/j.ins.2017.06.027
  11. Mailybayev, Y., Muratbekova, G., Altayeva, Z., Zhatkanbayev, O. (2022). Development of models and improvement of methods for formalization of design problems and automating technical and operational works of railway stations. Eastern-European Journal of Enterprise Technologies, 4 (3 (118)), 6–16. https://doi.org/10.15587/1729-4061.2022.263167
  12. Annam, J. R., Surampudi, B. R. (2016). Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule. 2016 International Conference on Signal and Information Processing (IConSIP), 1–5. https://doi.org/10.1109/iconsip.2016.7857480
  13. Smailov, N., Uralova, F., Kadyrova, R., Magazov, R., Sabibolda, A. (2025). Optymalizacja metod uczenia maszynowego do deanonimizacji w sieciach społecznościowych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (1), 101–104. https://doi.org/10.35784/iapgos.7098
  14. Goettling, M., Hammer, A., Malberg, H., Schmidt, M. (2024). xECGArch: a trustworthy deep learning architecture for interpretable ECG analysis considering short-term and long-term features. Scientific Reports, 14 (1). https://doi.org/10.1038/s41598-024-63656-x
  15. Zilberman, A., Rogel, S. (1990). Hemodynamic evaluation of common cardiac arrhythmias. International Journal of Cardiology, 27 (3), 341–349. https://doi.org/10.1016/0167-5273(90)90291-c
  16. Smailov, N., Orynbet, M., Nazarova, A., Torekhan, Z., Koshkinbayev, S., Yssyraiyl, K. et al. (2025). Optymalizacja pracy światłowodowych czujników w warunkach kosmicznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 130–134. https://doi.org/10.35784/iapgos.7200
  17. Hamo, C. E., DeJong, C., Hartshorne-Evans, N., Lund, L. H., Shah, S. J., Solomon, S., Lam, C. S. P. (2024). Heart failure with preserved ejection fraction. Nature Reviews Disease Primers, 10 (1). https://doi.org/10.1038/s41572-024-00540-y
  18. Sabibolda, A., Tsyporenko, V., Smailov, N., Tsyporenko, V., Abdykadyrov, A. (2024). Estimation of the Time Efficiency of a Radio Direction Finder Operating on the Basis of a Searchless Spectral Method of Dispersion-Correlation Radio Direction Finding. Advances in Asian Mechanism and Machine Science, 62–70. https://doi.org/10.1007/978-3-031-67569-0_8
  19. Braunwald, E., Frahm, C. J., Ross, J. (1961). Studies on starling’s law of the heart. V. Left ventricular function in man. Journal of Clinical Investigation, 40 (10), 1882–1890. https://doi.org/10.1172/jci104412
  20. Smailov, N., Akmardin, S., Ayapbergenova, A., Ayapbergenova, G., Kadyrova, R., Sabibolda, A. (2025). Analiza wydajności VLC w optycznych systemach komunikacji bezprzewodowej do zastosowań wewnętrznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 135–138. https://doi.org/10.35784/iapgos.6971
  21. deChazal, P., O’Dwyer, M., Reilly, R. B. (2004). Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features. IEEE Transactions on Biomedical Engineering, 51 (7), 1196–1206. https://doi.org/10.1109/tbme.2004.827359
  22. Yildirim, O., Baloglu, U. B., Tan, R.-S., Ciaccio, E. J., Acharya, U. R. (2019). A new approach for arrhythmia classification using deep coded features and LSTM networks. Computer Methods and Programs in Biomedicine, 176, 121–133. https://doi.org/10.1016/j.cmpb.2019.05.004
  23. Abdykadyrov, A., Smailov, N., Sabibolda, A., Tolen, G., Dosbayev, Z., Ualiyev, Z., Kadyrova, R. (2024). Optimization of distributed acoustic sensors based on fiber optic technologies. Eastern-European Journal of Enterprise Technologies, 5 (5 (131)), 50–59. https://doi.org/10.15587/1729-4061.2024.313455
  24. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., Tan, R. S. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89, 389–396. https://doi.org/10.1016/j.compbiomed.2017.08.022
  25. Bekbay, A., Ozhikenov, K., Ozhikenova, A., Bodin, O., Bezborodova, O., Rakhmatullov, F. (2019). Heart State Monitoring Using Multi-Agent Technology. 2019 8th Mediterranean Conference on Embedded Computing (MECO), 1–4. https://doi.org/10.1109/meco.2019.8760007
  26. Bekbay, A., Alimbayeva, Z., Alimbayev, C., Bayanbay, N., Ozhikenov, K., Mukazhanov, Y. (2022). Development of an atrioventricular block prediction of method for portable heart monitoring system. Eastern-European Journal of Enterprise Technologies, 3 (5 (117)), 15–27. https://doi.org/10.15587/1729-4061.2022.258791
  27. Smailov, N., Tsyporenko, V., Sabibolda, A., Tsyporenko, V., Abdykadyrov, A., Kabdoldina, A. et al. (2024). Usprawnienie cyfrowego korelacyjno-interferometrycznego ustalania kierunku za pomocą przestrzennego sygnału analitycznego. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 43–48. https://doi.org/10.35784/iapgos.6177
  28. Smailov, N., Tsyporenko, V., Ualiyev, Z., Issova, А., Dosbayev, Z., Tashtay, Y. et al. (2025). Improving accuracy of the spectral-correlation direction finding and delay estimation using machine learning. Eastern-European Journal of Enterprise Technologies, 2 (5 (134)), 15–24. https://doi.org/10.15587/1729-4061.2025.327021
  29. Rahman, H. U., Ahmad, J., Akhmediyarova, A., Oralbekova, D., Mamyrbayev, O. (2024). Deciphering the Role of Circadian Clock in Inflammatory Response and Immune Disorders Using Model Checking and Petri Nets. IEEE Access, 12, 196576–196590. https://doi.org/10.1109/access.2024.3521499
  30. Zilgarayeva, A., Smailov, N., Pavlov, S., Mirzakulova, S., Alimova, M., Kulambayev, B., Nurpeissova, D. (2024). Optical sensor to improve the accuracy of non-invasive blood sugar monitoring. Indonesian Journal of Electrical Engineering and Computer Science, 34 (3), 1489. https://doi.org/10.11591/ijeecs.v34.i3.pp1489-1498
An interpretable ECG-based approach for detecting hemodynamically significant arrhythmias using lightweight machine learning models

Downloads

Published

2025-10-28

How to Cite

Bekbay, A., Bazarbay, L., Bigaliyeva, Z., Baiturganova, V., Sabibolda, A., Mailybayev, Y., & Smailov, N. (2025). An interpretable ECG-based approach for detecting hemodynamically significant arrhythmias using lightweight machine learning models. Eastern-European Journal of Enterprise Technologies, 5(9 (137), 117–124. https://doi.org/10.15587/1729-4061.2025.340493

Issue

Section

Information and controlling system