Formation of a destructive layer in special rubbers depending on CO2-laser processing modes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.341378

Keywords:

rubber, laser engraving, destructive layer depth, CO2 laser power, quality improvement

Abstract

Special rubbers proceeding by laser engraving is the investigation object. Rubber products quality improvement was solving by means of laser engraving, which allows to achieve a high level of details, to get a complex geometry and sustainable quality having a minimum of the tool worn out. Experimental measurements of destructive layer depth inside different samples of rubber in dependence on the modes of CO2-laser processing were conducted. Rubber engraving proceeding by a wavelength of 10.6 μm CO2-laser was considered in the pulse mode series to provide the cutting edge correct geometry keeping fixed conditions of beam movement speed and acceleration.

Concerted experimental results (rubbers AERO Laserrubber, OLIO Laserrubber, TEMPO Laserrubber, CLASSICO Laserrubber and ECO Laserrubber) revealed a sustainable increasing the depth of the destructive layer on average by (1.0 ... 1.2) μm every 5 W along with increasing of CO2-laser power in the range of (30 ... 55) W.

Stabilization or slight fluctuations of the destructive layer depth were stated when power supplied exceeded of 60 W.

Obtained graphs show a high degree coincidence with analytical model and confirm the feasibility of laser engraving appliance exactly within the range of (35 ... 50) W to provide a precise and clean processing of high-quality rubber products

Author Biographies

Dmitro Sidorov, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Chemical, Polymer and Silicate Engineering

Denys Kozik, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD Student

Department of Chemical, Polymer and Silicate Engineering

Iryna Kazak, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Chemical, Polymer and Silicate Engineering

Tetiana Shylovych, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Chemical, Polymer and Silicate Engineering

Yurii Pribyliev, National Defence University of Ukraine

Doctor of Technical Sciences, Professor

Department of Information Warfare

References

  1. Verhun, O., Oleksiienko, O. (2023). Effect of actual adhesive strength on determination of application conditions for sealing polymer materials. Science and Construction, 35 (1). https://doi.org/10.33644/2313-6679-1-2023-5
  2. Mitsyk, А. V. (2022). Mathematical simulation of the deformation of the part material surface layer during its finishing and grinding processing with metal balls in the vibration polishing operation. Visnik of the Volodymyr Dahl East Ukrainian National University, 2 (272), 46–51. https://doi.org/10.33216/1998-7927-2022-272-2-46-51
  3. Dobrotvorskyi, S. S., Khavin, H. L., Basova, Ye. V., Aleksenko, B. O., Prykhodko, V. O. (2024). Shorstkist poverkhni pry lazerniy obrobtsi nerzhaviyuchoi stali. Kharkiv: NTU «KhPI», 167. https://doi.org/10.20998/978-617-05-0513-2
  4. Mushtaq, R. T., Wang, Y., Rehman, M., Khan, A. M., Mia, M. (2020). State-Of-The-Art and Trends in CO2 Laser Cutting of Polymeric Materials – A Review. Materials, 13 (17), 3839. https://doi.org/10.3390/ma13173839
  5. Kameyama, N., Yoshida, H., Fukagawa, H., Yamada, K., Fukuda, M. (2021). Thin-Film Processing of Polypropylene and Polystyrene Sheets by a Continuous Wave CO2 Laser with the Cu Cooling Base. Polymers, 13 (9), 1448. https://doi.org/10.3390/polym13091448
  6. Kameyama, N., Yoshida, H. (2022). Thermal Effect on Thin-Film Formation of the Polymer Sheets by the CO2 Laser with the Copper Base. Polymers, 14 (17), 3508. https://doi.org/10.3390/polym14173508
  7. Lieber, S. C., Varghese, A. P., Tarantino, R., Tafuni, A. (2023). Additive manufacturing for plastic extrusion die tooling: A numerical investigation. CIRP Journal of Manufacturing Science and Technology, 41, 401–412. https://doi.org/10.1016/j.cirpj.2023.01.003
  8. Schmidt, B., Rose, M., Zimmermann, M., Kästner, M. (2021). Analysis of process-induced damage in remote laser cut carbon fibre reinforced polymers. Journal of Materials Processing Technology, 295, 117162. https://doi.org/10.1016/j.jmatprotec.2021.117162
  9. Karamimoghadam, M., Dezaki, M. L., Zolfagharian, A., Bodaghi, M. (2023). Influence of post-processing CO2 laser cutting and FFF 3D printing parameters on the surface morphology of PLAs: Statistical modelling and RSM optimisation. International Journal of Lightweight Materials and Manufacture, 6 (2), 285–295. https://doi.org/10.1016/j.ijlmm.2023.01.004
  10. Munoz, A., Schmidt, J., Suffet, I. H. M., Tsai, C. S.-J. (2023). Characterization of Emissions from Carbon Dioxide Laser Cutting Acrylic Plastics. ACS Chemical Health & Safety, 30 (4), 182–192. https://doi.org/10.1021/acs.chas.3c00013
  11. Ham, S. S., Lee, H. (2020). Surface Characteristics of Polymers with Different Absorbance after UV Picosecond Pulsed Laser Processing Using Various Repetition Rates. Polymers, 12 (9), 2018. https://doi.org/10.3390/polym12092018
  12. Riveiro, A., Maçon, A. L. B., del Val, J., Comesaña, R., Pou, J. (2018). Laser Surface Texturing of Polymers for Biomedical Applications. Frontiers in Physics, 6. https://doi.org/10.3389/fphy.2018.00016
  13. Ruan, X., Wang, R., Luo, J., Yao, Y., Liu, T. (2018). Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Materials & Design, 160, 1168–1177. https://doi.org/10.1016/j.matdes.2018.10.050
  14. Anjum, A., Azharuddin Ali, M., Shaikh, A. A., Akhtar, S. S. (2024). A numerical and experimental analysis of CO2 laser micro-milling on PMMA sheet considering a multipass approach for microfluidic devices. Optics & Laser Technology, 176, 110860. https://doi.org/10.1016/j.optlastec.2024.110860
  15. Volova, T. G., Golubev, A. I., Nemtsev, I. V., Lukyanenko, A. V., Dudaev, A. E., Shishatskaya, E. I. (2021). Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition. Polymers, 13 (10), 1553. https://doi.org/10.3390/polym13101553
  16. Ahmad Sobri, S., Chow, T. P., Tatt, T. K., Nordin, M. H., Hermawan, A., Mohamad Amini, M. H. et al. (2025). Optimization and Validation of CO2 Laser-Machining Parameters for Wood–Plastic Composites (WPCs). Polymers, 17 (16), 2216. https://doi.org/10.3390/polym17162216
  17. Kashihara, K., Uto, Y., Nakajima, T. (2018). Rapid in situ synthesis of polymer-metal nanocomposite films in several seconds using a CO2 laser. Scientific Reports, 8 (1). https://doi.org/10.1038/s41598-018-33006-9
  18. Chen, X., Hu, Z. (2018). Study aspect ratio of microchannel on different polymer substrates with CO2 laser and hot bonding for microfluidic chip. AIP Advances, 8 (1). https://doi.org/10.1063/1.5012772
  19. Ravi-Kumar, S., Lies, B., Lyu, H., Qin, H. (2019). Laser Ablation of Polymers: A Review. Procedia Manufacturing, 34, 316–327. https://doi.org/10.1016/j.promfg.2019.06.155
  20. LaserBot-900. Available at: https://bot-ua.com/shop/co2/laserbot-900/?v=d41d8cd98f00
  21. LightBurn. Available at: https://lightburnsoftware.com/
  22. RUIDA RDWorks Software. Available at: https://www.ruidacontroller.com/ruida-rdworks-software/
  23. MT Pro Single/Multi-Channel Integrated Interferometer. Available at: https://en.dimension-tech.com/productdetail/6.html
  24. Classico. Laser rubber for text plate production, 60 Shore-A. Available at: https://www.trodat.net/int/en/shop/product/Products-International/Production-Materials/Laser-Rubber/Classico
  25. Pukhalska, H. V., Porvin, I. E. (2020). Lazerne markuvannia. TYZhDEN NAUKY-2020. Zaporizhzhia, 21–22. Available at: https://zp.edu.ua/uploads/dept_s&r/2020/conf/4.1/TN_2020-MF.pdf
  26. Munirathinam, B., Lerch, L., Hüne, D., Lentz, L., Lenk, T., Görke, M. et al. (2022). Enhanced Performance of Laser‐Structured Copper Electrodes Towards Electrocatalytic Hydrogenation of Furfural. ChemElectroChem, 9 (22). https://doi.org/10.1002/celc.202200885
Formation of a destructive layer in special rubbers depending on CO2-laser processing modes

Downloads

Published

2025-10-30

How to Cite

Sidorov, D., Kozik, D., Kazak, I., Shylovych, T., & Pribyliev, Y. (2025). Formation of a destructive layer in special rubbers depending on CO2-laser processing modes. Eastern-European Journal of Enterprise Technologies, 5(1 (137), 85–93. https://doi.org/10.15587/1729-4061.2025.341378

Issue

Section

Engineering technological systems