Determining basic technological parameters for the process of electrochemical extraction of copper from acid sulfate concentrated technological solutions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.341531

Keywords:

cathodic extraction, spent technological solutions, technological parameters, diaphragm and diaphragm-free electrolysis

Abstract

This study investigates concentrated model solutions, acid sulfate spent technological solutions (STSs) from surface preparation and coating operations by a number of enterprises, in order to devise unified technologies and to design relevant equipment.

To substantiate the basic parameters for an electrolysis system within the framework of the system approach (Quality Function Deployment), it is shown that regardless of the concept and mechanism of electrochemical transformations, one of the main elements is redox reactions that occur both at the electrode-solution interface and in the solution volume.

This paper reports experimental studies on electrochemical cathodic extraction of copper from acid sulfate concentrated technological solutions under conditions of non-stationary composition and changes in the properties of STSs. The basic technological parameters of the electrolysis process have been defined; a cathodic extraction installation of metal (copper) has been designed.

To adapt the installation to changes in technological parameters and to avoid the formation of by-products together with the main product (copper), installation and dismantling of cathodes and diaphragms are implied. To eliminate secondary contamination of STS, it is proposed to abandon the use of reagents in local cycles at all stages of STS purification in favor of electrochemical technology.

The kinetic data reported here (current density, current consumption/1 mol, deposition rate) make it possible to define the basic principles of control and regulation of the electrolysis process. The pH and Eh values make it possible to adjust the type of precipitate (foil, precipitate containing foreign substances), as well as determine the purpose of the technological process (regeneration, disposal).

It is recommended to use diaphragm-free electrolysis in local regeneration cycles and diaphragm electrolysis in local disposal cycles

Author Biographies

Mykola Yatskov, National University of Water and Environmental Engineering

PhD, Senior Researcher, Professor

Department of Chemistry and Physics

Natalia Korchyk, National University of Water and Environmental Engineering

PhD, Associate Professor

Department of Chemistry and Physics

Nadia Budenkova, National University of Water and Environmental Engineering

PhD, Associate Professor

Department of Chemistry and Physics

Oksana Mysina, National University of Water and Environmental Engineering

Senior Lecturer

Department of Chemistry and Physics

Serhii Kovalchuk, Separate Structural Unit “Rivne Technical Vocational College of the National University of Political Science and Technology”

PhD, Associate Professor

Department of Ecology

References

  1. Abidli, A., Huang, Y., Ben Rejeb, Z., Zaoui, A., Park, C. B. (2022). Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere, 292, 133102. https://doi.org/10.1016/j.chemosphere.2021.133102
  2. Fylypchuk, V. L., Shatalov, O. S. (2014). Bezpeka ekspluatatsiyi ustanovok dlia elektrokhimichnoho ochyshchennia stichnykh vod promyslovykh pidpryiemstv. Visnyk NUVHP, 1 (65), 436–445. Available at: https://ep3.nuwm.edu.ua/1431/1/Vt6551.pdf
  3. Grebenyuk, V. D., Linkov, Ν. Α., Linkov, V. M. (1998). Removal of Ni and Cu ions from aqueous solutions by means of a hybrid electrosorption/electrodialysis process. Water SA, 24 (2), 123–127. Available at: https://www.wrc.org.za/wp-content/uploads/mdocs/WaterSA_1998_02_apr98_p123.pdf
  4. Mourdikoudis, S., Dominguez‐Benetton, X. (2025). Physicochemical vs Electrochemical Technologies for Metal Recovery – Main Insights, Comparison, Complementarity and Challenges. Chemistry–Methods, 5 (3). https://doi.org/10.1002/cmtd.202400046
  5. Dermentzis, K. I., Marmanis, D. I., Christoforidis, A. K., Stergiopoulos, D. K. (2016). Electrochemical recovery of metallic copper from galvanic effluents. 13th Intern. Conf. PHYSICAL CHEMISTRY 2016. Belgrade. Available at: https://www.researchgate.net/publication/344132075_Electrochemical_recovery_of_metallic_copper_from_galvanic_effluents
  6. Dzyazko, Yu., Atamanyuh, V. (2004). Electrodionization method and its perspectives for natural and waste waters purification from heavy metals ions. Available at: https://ekmair.ukma.edu.ua/server/api/core/bitstreams/7894a973-6d26-46b3-9d0f-f1ed6ff3076b/content
  7. Stergiopoulos, D., Dermentzis, K., Spanos, T., Giannakoudakis, P., Agapiou, A., Stylianou, M. (2019). Combined electrocoagulation/electrowinning process for recovery of metallic copper from electroplating effluents. Journal of Engineering Science and Technology Review, 12 (3). Available at: https://www.researchgate.net/publication/344112550_Combined_electrocoagulationelectrowinning_process_for_recovery_of_metallic_copper_from_electroplating_effluents
  8. Fylypchuk, V. (2002). Elektrokhimichna zmina okysno-vidnovnoho potentsialu pry ochyshchenni stichnykh vod. Visnyk ternopilskoho derzhavnoho tekhnichnoho universytetu, 7 (4), 131–137. Available at: https://elartu.tntu.edu.ua/bitstream/lib/42474/2/TSTUSJ_2002v7n4_Filipchuk_V-Electrochemical_changing_131-137.pdf
  9. Antropov, L. I. (1993). Teoretychna elektrokhimiya. Kyi: Lybid, 544.
  10. Yatskov, M. V., Korchyk, N. M., Kyryliuk, S. V. (2024). Ochyshchennia kontsentrovanykh stichnykh vod halvanichnoho vyrobnytstva u kombinovanykh systemakh. Rivne: O. Zen, 200.
  11. Yatskov, M., Korchyk, N., Prorok, O. (2019). Developing a technology for processing cuprum containing wastes from galvanic production aimed at their further use. Eastern-European Journal of Enterprise Technologies, 6 (10 (102)), 32–41. https://doi.org/10.15587/1729-4061.2019.186620
  12. Yatskov, M. V., Korchyk, N. M., Prorok, O. A., (2017). Research of physico-chemical properties for high-concentrated suspensions from galvanic manufactures in the reagent slims form. Visnyk NUVHP, 3 (79), 60–67. Available at: http://nbuv.gov.ua/UJRN/Vnuvgp_tekhn_2017_3_9
  13. Jackowska, K., Krysiński, P. (2020). Applied Electrochemistry. De Gruyter Brill. https://doi.org/10.1515/9783110600834
  14. Volkov, S. V., Kozin, L. F., Omelchuk, A. O. (2005). Deiaki problemy suchasnoi elektrokhimiyi. Ukrainskyi khimichnyi zhurnal, 71 (7), 3–32. Available at: https://ucj.org.ua/index.php/journal/issue/download/190/7-2005
  15. Stezeryanskii, E. A. (2024). Electrochemical redox reactions of hexamethylenteramine tetraiodide. Modern Aspects of Electrochemistry. Kyiv: MPBP «Hordon», 120–121. https://doi.org/10.33609/elchimcongr.2024.09.1-210
  16. Cesiulis, H., Tsyntsaru, N. (2023). Eco-Friendly Electrowinning for Metals Recovery from Waste Electrical and Electronic Equipment (WEEE). Coatings, 13 (3), 574. https://doi.org/10.3390/coatings13030574
  17. Chen, L., Zhang, G., Liu, H., Miao, S., Chen, Q., Lan, H., Qu, J. (2024). Efficient Metal Recovery from Industrial Wastewater: Potential Oscillation and Turbulence Mode for Electrochemical System. Engineering, 38, 184–193. https://doi.org/10.1016/j.eng.2023.12.002
  18. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
  19. Zeng, H., Liu, S., Chai, B., Cao, D., Wang, Y., Zhao, X. (2016). Enhanced Photoelectrocatalytic Decomplexation of Cu–EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction. Environmental Science & Technology, 50 (12), 6459–6466. https://doi.org/10.1021/acs.est.6b00632
  20. Yatskov, M. V., Korchyk, N. M., Shchuhailov, V. S., Mysina, O. I. (2001). Pat. No. 35505 A UA. Sposib ochyshchennia stichnykh vod vyrobnytstva drukovanykh plat vid orhanichnykh domishok. No. 99105840; declareted: 26.10.1999; published: 15.03.2001. Available at: https://base.nipo.gov.ua/searchInvRevoke/search.php?action=showsearchresults&page=1&lang=ukr&qp=claims_per_page%3D10%3Bch_0%3Don%3Bqe0%3D35505%3B
  21. Chan, L.-K., Wu, M.-L. (2002). Quality Function Deployment: A Comprehensive Review of Its Concepts and Methods. Quality Engineering, 15 (1), 23–35. https://doi.org/10.1081/qen-120006708
  22. Laboratorna robota No. 10 Fotometrychnyi analiz. Vyznachennia vmistu midi (II) u rozch (2020). Analitychna khimiya. Chernihiv: NU «Chernihivska politekhnika», 59–64. Available at: https://ir.stu.cn.ua/bitstream/handle/123456789/20292/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D1%82%D0%B8%D1%87%D0%BD%D0%B0%20%20%D1%85%D1%96%D0%BC%D1%96%D1%8F..pdf?sequence=1&isAllowed=y/
  23. Korchyk, N. M., Budenkova, N. M., Sen, O. M. (2013). Elektrokhimichni protsesy vyluchennia metaliv z vidkhodiv halvanichnoho vyrobnytstva. Visnyk NUVHP, 3 (63), 133–141.
Determining basic technological parameters for the process of electrochemical extraction of copper from acid sulfate concentrated technological solutions

Downloads

Published

2025-10-28

How to Cite

Yatskov, M., Korchyk, N., Budenkova, N., Mysina, O., & Kovalchuk, S. (2025). Determining basic technological parameters for the process of electrochemical extraction of copper from acid sulfate concentrated technological solutions. Eastern-European Journal of Enterprise Technologies, 5(10 (137), 41–51. https://doi.org/10.15587/1729-4061.2025.341531