Determining the possibility of high-precision deformation measurement in building structures using fiber-optic methods

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.342161

Keywords:

fiber-optic sensor, deformation measurement, construction structure, Bragg grating, structural monitoring

Abstract

The object of this study is the deformation process in reinforced-concrete structural elements equipped with embedded fiber-optic sensors. The problem addressed corresponds to unresolved issues identified in previous studies – namely, the lack of standardized quantitative evaluation of accuracy and stability in fiber-optic deformation measurement. Despite high laboratory precision, existing methods show reduced long-term reliability, temperature-strain cross-sensitivity, and calibration inconsistency when applied to real structures.

The main results show that fiber Bragg grating (FBG) and interferometric sensors achieved sub-micrometer deformation resolution with deviations below 2–3 με and long-term drift under 0.5%. Measurements remained stable under variable loading and temperature, confirming high reproducibility and electromagnetic immunity. These findings validate the hypothesis that optical wavelength shifts directly correspond to mechanical strain, ensuring reliable strain detection without recalibration.

This effectiveness stems from the intrinsic photoelastic coupling and refractive-index sensitivity of the optical fiber, which provide nanometric resolution, corrosion resistance, and long-term operational stability. The proposed method is applicable for long-term monitoring of bridges, tunnels, and high-rise facilities exposed to environmental and cyclic stresses. Therefore, research on high-precision fiber-optic deformation measurement remains scientifically relevant for improving the safety and durability of modern civil engineering structures.

Author Biographies

Nurzhigit Smailov, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

PhD

Research Division

Department of Radio Engineering, Electronics and Space Technologies

Amandyk Tuleshov, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov

PhD, Professor

Research Division

Akezhan Sabibolda, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Almaty Academy of Ministry of Internal Affairs

PhD

Research Division

Department of Cyber Security and Information Technology

Yersaiyn Mailybayev, International University of Transportation and Humanities

PhD, Associate Professor

Department of Computer Technology and Telecommunications

Nurzhamal Kashkimbayeva, Astana IT University

PhD

Department of Computer Engineering

Ainur Kuttybayeva, Satbayev University

Candidate of Economic Sciences, Associate Professor

Department of Electronics, Telecommunications and Space Technologies

Gulbakhar Yussupova, ALT University

PhD

Department of Radio Engineering and Telecommunications

Askhat Batyrgaliyev, Satbayev University

PhD

Department of Cybersecurity, Information Processing and Storage

Beibarys Sekenov, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

Master of Technical Sciences

Research Division

Department of Radio Engineering, Electronics and Space Technologies

Aziskhan Amir, Institute of Mechanics and Mechanical Engineering named after Academician U. A. Dzholdasbekov; Satbayev University

Master Student

Research Division

Department of Radio Engineering, Electronics and Space Technologies

References

  1. Wu, T., Liu, G., Fu, S., Xing, F. (2020). Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors, 20 (16), 4517. https://doi.org/10.3390/s20164517
  2. Lopez-Higuera, J. M., Rodriguez Cobo, L., Quintela Incera, A., Cobo, A. (2011). Fiber Optic Sensors in Structural Health Monitoring. Journal of Lightwave Technology, 29 (4), 587–608. https://doi.org/10.1109/jlt.2011.2106479
  3. Barrias, A., Casas, J., Villalba, S. (2016). A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors, 16 (5), 748. https://doi.org/10.3390/s16050748
  4. Ye, X. W., Su, Y. H., Han, J. P. (2014). Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. The Scientific World Journal, 2014, 1–11. https://doi.org/10.1155/2014/652329
  5. Guo, H., Xiao, G., Mrad, N., Yao, J. (2011). Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors, 11 (4), 3687–3705. https://doi.org/10.3390/s110403687
  6. Bao, X., Chen, L. (2012). Recent Progress in Distributed Fiber Optic Sensors. Sensors, 12 (7), 8601–8639. https://doi.org/10.3390/s120708601
  7. Motil, A., Bergman, A., Tur, M. (2016). [INVITED] State of the art of Brillouin fiber-optic distributed sensing. Optics & Laser Technology, 78, 81–103. https://doi.org/10.1016/j.optlastec.2015.09.013
  8. Bado, M. F., Casas, J. R. (2021). A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors, 21 (5), 1818. https://doi.org/10.3390/s21051818
  9. Guemes, A., Mujica, L. E., del-Río-Velilla, D., Fernandez-Lopez, A. (2025). Structural Health Monitoring by Fiber Optic Sensors. Photonics, 12 (6), 604. https://doi.org/10.3390/photonics12060604
  10. Smailov, N., Tolemanova, A., Aziskhan, A., Sekenov, B., Sabibolda, A. (2025). Zastosowanie systemów czujników światłowodowych w monitorowaniu stanu technicznego konstrukcji betonowych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (3), 73–76. https://doi.org/10.35784/iapgos.7606
  11. Wawrzyk, M. (2022). The spectrum length method in quantitative interpretation of selected optical spectra. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 12 (2), 20–23. https://doi.org/10.35784/iapgos.2931
  12. Smailov, N., Koshkinbayev, S., Tashtay, Y., Kuttybayeva, A., Abdykadyrkyzy, R., Arseniev, D. et al. (2023). Numerical Simulation and Measurement of Deformation Wave Parameters by Sensors of Various Types. Sensors, 23 (22), 9215. https://doi.org/10.3390/s23229215
  13. Jati, M. P., Yao, C.-K., Wu, Y.-C., Luthfi, M. I., Yang, S.-H., Dehnaw, A. M., Peng, P.-C. (2025). A Deep Learning Framework for Enhancing High-Frequency Optical Fiber Vibration Sensing from Low-Sampling-Rate FBG Interrogators. Sensors, 25 (13), 4047. https://doi.org/10.3390/s25134047
  14. Sabibolda, A., Tsyporenko, V., Smailov, N., Tsyporenko, V., Abdykadyrov, A. (2024). Estimation of the Time Efficiency of a Radio Direction Finder Operating on the Basis of a Searchless Spectral Method of Dispersion-Correlation Radio Direction Finding. Advances in Asian Mechanism and Machine Science, 167, 62–70. https://doi.org/10.1007/978-3-031-67569-0_8
  15. Chen, X., Liu, M., Li, C., Song, H., Zhu, S. (2024). A novel integrated sensing structure based on double quartz tubes stepped fiber grating and its theoretical study on temperature sensing performance. Optics and Lasers in Engineering, 181, 108382. https://doi.org/10.1016/j.optlaseng.2024.108382
  16. Smailov, N., Orynbet, M., Nazarova, A., Torekhan, Z., Koshkinbayev, S., Yssyraiyl, K. et al. (2025). Optymalizacja pracy światłowodowych czujników w warunkach kosmicznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 130–134. https://doi.org/10.35784/iapgos.7200
  17. Macedo, L., Souza, E. A., Frizera, A., Pontes, M. J., Marques, C., Leal-Junior, A. (2023). Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings. Sensors, 23 (4), 1860. https://doi.org/10.3390/s23041860
  18. Smailov, N., Zhadiger, T., Tashtay, Y., Abdykadyrov, A., Amir, A. (2024). Fiber laser-based two-wavelength sensors for detecting temperature and strain on concrete structures. International Journal of Innovative Research and Scientific Studies, 7 (4), 1693–1710. https://doi.org/10.53894/ijirss.v7i4.3481
  19. Huang, L., Zhao, Z., Sun, Y. (2024). Damage Monitoring of Reinforced Concrete Slabs Utilizing Distributed Fiber Sensing Technology. https://doi.org/10.2139/ssrn.4946103
  20. Smailov, N., Akmardin, S., Ayapbergenova, A., Ayapbergenova, G., Kadyrova, R., Sabibolda, A. (2025). Analiza wydajności VLC w optycznych systemach komunikacji bezprzewodowej do zastosowań wewnętrznych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15 (2), 135–138. https://doi.org/10.35784/iapgos.6971
  21. Alj, I., Quiertant, M., Khadour, A., Grando, Q., Benzarti, K. (2022). Application of Distributed Optical Fiber Sensing Technology to the Detection and Monitoring of Internal Swelling Pathologies in Massive Concrete Blocks. Sensors, 22 (20), 7797. https://doi.org/10.3390/s22207797
  22. Smailov, N., Tsyporenko, V., Sabibolda, A., Tsyporenko, V., Abdykadyrov, A., Kabdoldina, A. et al. (2024). Streamlining digital correlation-interferometric direction finding with spatial analytical signal. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 43–48. https://doi.org/10.35784/iapgos.6177
  23. Chethana, K., Nandi, S., Prasad, A. S. G., Asokan, S. (2025). Fiber Bragg Grating based optical sensor for pulse morphology. Journal of Optics. https://doi.org/10.1007/s12596-025-02895-1
  24. Abdykadyrov, A., Smailov, N., Sabibolda, A., Tolen, G., Dosbayev, Z., Ualiyev, Z., Kadyrova, R. (2024). Optimization of distributed acoustic sensors based on fiber optic technologies. Eastern-European Journal of Enterprise Technologies, 5 (5 (131)), 50–59. https://doi.org/10.15587/1729-4061.2024.313455
  25. Xue, W., Huang, H., Pang, X., Yan, G. (2025). Fiber Bragg Grating Based Load Monitoring for Carrier-Based Aircraft Main Landing Gear. Sensors, 25 (17), 5559. https://doi.org/10.3390/s25175559
  26. Yassin, M. H., Farhat, M. H., Nahas, M., Saad, A. S. (2024). Investigation of fiber Bragg grating sensor measurability in concrete beams under static load conditions. Heliyon, 10 (22), e40105. https://doi.org/10.1016/j.heliyon.2024.e40105
  27. Yang, H., Huang, Y., Zhou, Z., Ou, J. (2022). Long-term performance of packaged fiber Bragg grating sensors for strain monitoring inside creep medium. International Journal of Smart and Nano Materials, 13 (1), 42–63. https://doi.org/10.1080/19475411.2022.2027548
  28. Zdanowicz, K., Gebauer, D., Koschemann, M., Speck, K., Steinbock, O., Beckmann, B., Marx, S. (2022). Distributed fiber optic sensors for measuring strains of concrete, steel, and textile reinforcement: Possible fields of application. Structural Concrete, 23 (6), 3367–3382. https://doi.org/10.1002/suco.202100689
  29. Sahota, J. K., Gupta, N., Dhawan, D. (2020). Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Optical Engineering, 59 (06), 1. https://doi.org/10.1117/1.oe.59.6.060901
  30. Smailov, N., Tolemanova, A., Ayapbergenova, A., Tashtay, Y., Amir, A. (2025). Modelling and Application of Fibre Optic Sensors for Concrete Structures: A Literature Review. Civil Engineering and Architecture, 13 (3), 1885–1897. https://doi.org/10.13189/cea.2025.130332
Determining the possibility of high-precision deformation measurement in building structures using fiber-optic methods

Downloads

Published

2025-10-31

How to Cite

Smailov, N., Tuleshov, A., Sabibolda, A., Mailybayev, Y., Kashkimbayeva, N., Kuttybayeva, A., Yussupova, G., Batyrgaliyev, A., Sekenov, B., & Amir, A. (2025). Determining the possibility of high-precision deformation measurement in building structures using fiber-optic methods. Eastern-European Journal of Enterprise Technologies, 5(5 (137), 41–49. https://doi.org/10.15587/1729-4061.2025.342161

Issue

Section

Applied physics