Designing and determining the physical-chemical properties of lithium aluminosilicate glass-ceramic materials for armor protection

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.346699

Keywords:

aluminosilicate glass-ceramic materials, armor element, impact resistance, wave propagation velocity, physical-mechanical properties

Abstract

This study investigates spodumene glassy materials in the R2O-RO-RO2-R2O3-Li2O-CaO-P2O5-SiO2 system.

The task addressed is to obtain lightweight glassy materials with high microhardness and resistance to cracking, while maintaining a low apparent density and moderate energy consumption during manufacture. DTA/DSC, XRD, and optical microscopy were used to examine the structure and phase composition of samples obtained by one- and two-stage heat treatment.

Based on the research results, a series of compositions were developed; the structural characteristics of the glass matrix were determined for them. The resulting data show that the low-temperature two-stage heat treatment (nucleation at 530°C, crystallization at 850…900°C) contributes to the formation of a fine-grained structure, in which β-spodumene predominates (80…85 vol.%). Compared to the single-step process, HV and H increased by 9…20%, K1C by 20…31%, and E by 25%. This effect can be explained by metastable micro liquefaction and early nucleation, leading to the formation of highly dense, fine-grained prismatic β-spodumene grains that inhibit crack propagation.

The choice of oxides and composition of nucleators (TiO2, ZrO2) is crucial. The introduction of fluorides and small amounts of rare-earth oxides reduces the melt viscosity and nucleation temperature. The addition of P2O5 promotes localized micro liquefaction of the fine-grained morphology of the target phase. These factors reconstruct the glassy phase and contribute to mechanical strengthening, distributing stresses more evenly within the finely dispersed crystalline matrix.

The practical significance of this study is that the obtained spodumene-containing composite materials have both high mechanical properties (HV = 7.9…9.2 GPa; K1C = 1.8…3.4 MPa·m0.5) and a reasonably low apparent density (ρ = 2370…2450 kg/m3) compared to other protective materials. These materials are suitable for the manufacture of lightweight individual bulletproof composite components.

Author Biographies

Sviatoslav Riabinin, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Philosophy (PhD)

Department of Ceramic Technology, Refractories, Glass, and Enamels

Artem Zakharov, National Technical University "Kharkiv Polytechnic Institute"

PhD

Department of Ceramic Technology, Refractories, Glass, and Enamels

Mykyta Maistat, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Philosophy (PhD)

Department of Ceramic Technology, Refractories, Glass, and Enamels

Stanislav Lihezin, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Philosophy (PhD)

Department of Ceramic Technology, Refractories, Glass, and Enamels

References

  1. Venkateswaran, C., Sreemoolanadhan, H., Vaish, R. (2021). Lithium aluminosilicate (LAS) glass-ceramics: a review of recent progress. International Materials Reviews, 67 (6), 620–657. https://doi.org/10.1080/09506608.2021.1994108
  2. LaSalvia, J. C. (2015). Advances in ceramic armor. Wiley.
  3. Fejdyś, M., Kośla, K., Kucharska-Jastrząbek, A., Łandwijt, M. (2020). Influence of ceramic properties on the ballistic performance of the hybrid ceramic–multi-layered UHMWPE composite armour. Journal of the Australian Ceramic Society, 57 (1), 149–161. https://doi.org/10.1007/s41779-020-00516-7
  4. Dresch, A. B., Venturini, J., Arcaro, S., Montedo, O. R. K., Bergmann, C. P. (2021). Ballistic ceramics and analysis of their mechanical properties for armour applications: A review. Ceramics International, 47 (7), 8743–8761. https://doi.org/10.1016/j.ceramint.2020.12.095
  5. Xiang, S., Ma, L., Yang, B., Dieudonne, Y., Pharr, G. M., Lu, J. et al. (2019). Tuning the deformation mechanisms of boron carbide via silicon doping. Science Advances, 5 (10). https://doi.org/10.1126/sciadv.aay0352
  6. Shen, Z., Hu, D., Yang, G., Han, X. (2019). Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet. Composite Structures, 213, 209–219. https://doi.org/10.1016/j.compstruct.2019.01.078
  7. Sajdak, M., Kornaus, K., Zientara, D., Moskała, N., Komarek, S., Momot, K. et al. (2024). Processing, Microstructure and Mechanical Properties of TiB2-MoSi2-C Ceramics. Crystals, 14 (3), 212. https://doi.org/10.3390/cryst14030212
  8. Chiu, Y.-J., Yen, C.-Y., Chiang, M.-S., Chen, G.-J., Jian, S.-R., Wang, C., Kao, H.-L. (2017). Mechanical Properties and Fracture Toughness of AlN Thin Films Deposited Using Helicon Sputtering. Nanoscience and Nanotechnology Letters, 9 (4), 562–566. https://doi.org/10.1166/nnl.2017.2357
  9. Gallo, L. S., Villas Boas, M. O. C., Rodrigues, A. C. M., Melo, F. C. L., Zanotto, E. D. (2019). Transparent glass–ceramics for ballistic protection: materials and challenges. Journal of Materials Research and Technology, 8 (3), 3357–3372. https://doi.org/10.1016/j.jmrt.2019.05.006
  10. Li, M., Xiong, C., Ma, Y., Jiang, H. (2022). Study on Crystallization Process of Li2O–Al2O3–SiO2 Glass-Ceramics Based on In Situ Analysis. Materials, 15 (22), 8006. https://doi.org/10.3390/ma15228006
  11. Dittmer, M., Ritzberger, C., Höland, W., Rampf, M. (2018). Controlled precipitation of lithium disilicate (Li2Si2O5) and lithium niobate (LiNbO3) or lithium tantalate (LiTaO3) in glass-ceramics. Journal of the European Ceramic Society, 38 (1), 263–269. https://doi.org/10.1016/j.jeurceramsoc.2017.08.032
  12. Glatz, P., Comte, M., Montagne, L., Doumert, B., Cousin, F., Cormier, L. (2020). Structural evolution at short and medium range distances during crystallization of a P2O5-Li2O-Al2O3-SiO2 glass. Journal of the American Ceramic Society, 103 (9), 4969–4982. https://doi.org/10.1111/jace.17189
  13. Abdullah, A. A., Dlugogorski, B. Z., Oskierski, H. C., Senanayake, G. (2024). Kinetics of spodumene calcination (α-LiAlSi2O6). Minerals Engineering, 216, 108902. https://doi.org/10.1016/j.mineng.2024.108902
  14. Savvova, O. V., Babich, O. V., Voronov, G. K., Ryabinin, S. O. (2017). High-Strength Spodumene Glass-Ceramic Materials. Strength of Materials, 49 (3), 479–486. https://doi.org/10.1007/s11223-017-9890-4
  15. Savvova, O. V., Babich, O. V., Voronov, H. K., Riabinin, S. O. (2017). Vysokomitsni spodumenovi sklokrystalichni materialy. Problemy mitsnosti, 3, 167–175. Available at: https://nasplib.isofts.kiev.ua/items/6a48d4df-eee2-4aeb-9a2a-fab8af8a5c49
  16. NATO AEP-55 STANAG 4569 Protection levels for Occupants of Logistic and Light Armoured Vehicles. NATO. Available at: https://ballistics.com.au/wp-content/uploads/2020/05/NATO_AEP-55_STANAG_4569_standards.pdf
  17. Yu, X., Wang, M., Rao, Y., Xu, Y., Xia, M., Zhang, X., Lu, P. (2023). Unveiling the evolution of early phase separation induced by P2O5 for controlling crystallization in lithium disilicate glass system. Journal of the European Ceramic Society, 43 (12), 5381–5389. https://doi.org/10.1016/j.jeurceramsoc.2023.05.006
  18. Zhou, Z., He, F., Shi, M., Xie, J., Wan, P., Cao, D., Zhang, B. (2022). Influences of Al2O3 content on crystallization and physical properties of LAS glass-ceramics prepared from spodumene. Journal of Non-Crystalline Solids, 576, 121256. https://doi.org/10.1016/j.jnoncrysol.2021.121256
  19. Lisachuk, G. V., Ryshenko, M. I., Belostockaya, L. A. (2008). Steklokristallicheskie pokrytiya po keramike. Kharkiv: NTU" HPI, 480. Available at: https://library.kpi.kharkov.ua/files/new_postupleniya/stkrpo.pdf
  20. Trusova, Yu. D. (2004). Empiricheskiy kriteriy kristallizacionnoy sposobnosti mnogokomponentnyh oksidnyh rasplavov. Vestnik NTU «KhPI», 34, 38–44.
  21. Savvova, О., Voronov, H., Babich, О., Fesenko, O., Riabinin, S., Bieliakov, R. (2020). Solid Solutions Formation Mechanism in Cordierite-Mullite Glass Materials During Ceramization. Chemistry & Chemical Technology, 14 (4), 583–589. https://doi.org/10.23939/chcht14.04.583
  22. Savvova, O. V., Ryabinin, S. A., Svitlichniy, E. A., Voronov, G. K., Fesenko, A. I. (2019). Selection justification of methods for obtaining glass-ceramic materials. Keramika: Nauka i Zhyttia, 3 (44), 8–15. https://doi.org/10.26909/csl.3.2019.1
  23. Riabinin, S., Zakharov, A., Maizelis, A., Prytychenko, H. (2024). Determination of prospective directions for the improvement of materials for individual armor protection. Bulletin of the National Technical University “KhPI”. Series: Chemistry, Chemical Technology and Ecology, 2 (10), 53–60. https://doi.org/10.20998/2079-0821.2023.02.09
  24. ISO 23146:2012. Fine ceramics (advanced ceramics, advanced technical ceramics) — Test methods for fracture toughness of monolithic ceramics — Single-edge V-notch beam (SEVNB) method. ISO. Available at: https://www.iso.org/standard/62093.html
  25. EN 1288-1:2000. Glass in building - Determination of the bending strength of glass - Part 1: Fundamentals of testing glass. Available at: https://standards.iteh.ai/catalog/standards/cen/5c0c5441-ce5e-44f4-ae8e-b187edd43653/en-1288-1-2000
  26. ASTM C730-98(2021). Standard Test Method for Knoop Indentation Hardness of Glass. ASTM International. Available at: https://www.astm.org/c0730-98r21.html
  27. Inage, K., Akatsuka, K., Iwasaki, K., Nakanishi, T., Maeda, K., Yasumori, A. (2020). Effect of crystallinity and microstructure on mechanical properties of CaO-Al2O3-SiO2 glass toughened by precipitation of hexagonal CaAl2Si2O8 crystals. Journal of Non-Crystalline Solids, 534, 119948. https://doi.org/10.1016/j.jnoncrysol.2020.119948
  28. Fedorenko, O. Yu. et al. (2015). Khimichna tekhnolohiya tuhoplavkykh nemetalevykh i sylikatnykh materialiv u prykladakh i zadachakh. Ch. 2. Fizyko-khimichni systemy, fazovi rivnovahy, termodynamika, resurso- ta enerhozberezhennia v tekhnolohiyi tuhoplavkykh nemetalevykh i sylikatnykh materialiv. Kharkiv, 336. Available at: https://library.kpi.kharkov.ua/uk/chemistry_himtehnol
Designing and determining the physical-chemical properties of lithium aluminosilicate glass-ceramic materials for armor protection

Downloads

Published

2025-12-10

How to Cite

Riabinin, S., Zakharov, A., Maistat, M., & Lihezin, S. (2025). Designing and determining the physical-chemical properties of lithium aluminosilicate glass-ceramic materials for armor protection. Eastern-European Journal of Enterprise Technologies, 6(12 (138), 17–25. https://doi.org/10.15587/1729-4061.2025.346699

Issue

Section

Materials Science