Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks

Authors

  • Сергій Олександрович Тимчук Kharkiv Petro Vasylenko National Technical University of Agriculture Engelsa 19, Kharkov, 61052, Ukraine https://orcid.org/0000-0002-8600-4234
  • Александр Александрович Мирошник Kharkov Petro Vasilenko National Technical University of Agriculture 19, Engelsa str, room 407, Kharkov, Ukraine, 61052, Ukraine https://orcid.org/0000-0001-8745-9903

DOI:

https://doi.org/10.15587/1729-4061.2015.36003

Keywords:

electricity loss, voltage asymmetry, voltage nonsinusoidality, fuzzy sets

Abstract

The level of electricity loss indicates the efficiency level of electricity supply system. Precise calculation of electricity loss, especially in rural networks (0.38/0.22 kW), is not always possible. It is even more difficult to structure losses at changing PQI since there emerges a problem of reliability of the background information. We suggest solving the difficult problem by means of presenting electricity losses in fuzzy form, which allows to observe dynamic changes of losses at changing PQI as well as to compare the level of losses in the network with the norm. The emerging problem of uncertainty of the background information is solved with the help of fuzzy sets. Meanwhile, the rate of correspondence of PQI fuzzy values to vague standards of power quality should be estimated at their intersection. The intersection of fuzzy numbers can be evaluated due to the area of the figure created by the intersection membership function.

Instead of considering the existing determined dependencies of electricity losses, we suggest presenting losses in fuzzy form with regard to peculiarities of particular loads and elements of power network.

We have suggested expressions for the calculation of electricity losses for different loads, considered losses from asymmetry and nonsinusoidality for asynchronous engines and power transformers as well as presented graphs that distinctly show the range and dynamic changes of electricity losses depending on PQI.

The importance of the obtained findings consists in the new possibility of raising the informational content of the evaluated electricity losses when the background information is uncertain.

Author Biographies

Сергій Олександрович Тимчук, Kharkiv Petro Vasylenko National Technical University of Agriculture Engelsa 19, Kharkov, 61052

Ph.D., Associate Professor, Department of computer – integrated technologies

Александр Александрович Мирошник, Kharkov Petro Vasilenko National Technical University of Agriculture 19, Engelsa str, room 407, Kharkov, Ukraine, 61052

Associate professor, Candidate of technical science

The department of automation and the computer integrated technologies

References

  1. Kartashev, I. I.; Kaluginoy, M. A. (Ed.) (2000) Kachestvo elektroenergii v sistemah elektrosnabzheniya. Sposobyi ego kontrolya i obespecheniya. Moscow: Izdatelstvo MEI, 120.
  2. Zhelezko, Yu. S. (2009). Poteri elektroenergii. Reaktivnaya moschnost. Kachestvo elektroenergii: Rukovodstvo dlya prakticheskih raschetov. Moscow: ENAS, 456.
  3. Semichevskiy, P. I. (1978). Metodika rascheta dopolnitelnyih poter aktivnyih moschnosti i elektroenergii v elementah sistem elektrosnabzheniya promyishlennyih predpriyatiy, obuslovlennyie vyisshimi garmonikami. Moscow, 206.
  4. Zhezhelenko, I. V. (2000). Vyisshie garmoniki v sistemah elektrosnabzheniya prompredpriyatiy. Moscow: Energoatomizdat, 186.
  5. Shidlovskiy, A. K., Kuznetsov, V. G. (1985). Povyishenie kachestva energii v elektricheskih setyah. Kiev: Nauk, dumka, 268.
  6. Zhelezko, Yu. S. (1989). Vyibor meropriyatiy po snizheniyu poter elektroenergii v elektricheskih setyah: Rukovodstvo dlya prakticheskih raschetov. M.: Energoatomizdat, 176.
  7. Popov, V. A., Ekel, P. Ya. (1986). Teoriya nechetkih mnozhestv i zadachi upravleniya razvitiem i funktsionirovaniem elektroenergeticheskih sistem. Tehn. kibernetika: izv. AN SSSR, 4, 143–151.
  8. Wang, H.-F., Tsaur, R.-C. (2000). Insight of a fuzzy regression model. Fuzzy Sets and Systems, 112 (3), 355–369. doi: /10.1016/s0165-0114(97)00375-8
  9. Kofman, A. (1982). Vvedenie v teoriyu nechetkih mnozhestv. Moscow: Radio i svyaz, 432.
  10. Buckley, J. J., Feuring, T. (2000). Linear and non-linear fuzzy regression: Evolutionary algorithm solutions. Fuzzy Sets and Systems, 112 (3), 381–394. doi: 10.1016/s0165-0114(98)00154-7
  11. Djomin, D. A. (2013) Nechetkaja klasterizacija v zadache postroenie modelej «sostav – svojstvo» po dannym passivnogo jeksperimenta v uslovijah neopredeljonnosti, Problemy mashinostroenija, 6, 15–23.
  12. Seraya, O. V., Demin, D. A. (2012). Linear regression analysis of a small sample of fuzzy input data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
  13. Raskin, L. G., Seraja, O. V. (2008) Nechetkaja matematika: monogr. Har'kov: Parus, 352.
  14. Lezhnjuk, P. D., Rubanenko, O. O. (2006). Zastosuvannja pareto-optimal'nostі α-rіvnja dlja rozv‘jazuvannja zadach energetiki z nechіtkimi parametrami, Vіsnik KDPU, 4 (39), 144–146.
  15. Gorbіjchuk, M. І. (1997) Sposіb vіdboru kriterіїv optimal'nostі pri adaptivnomu upravlіnnі procesom burіnnja. Rozvіdka і rozrobka naftovih і gazovih rodovishh. Serіja: Tehnіchna kіbernetika ta elektrifіkacіja ob’єktіv palivno-energetichnogo kompleksu, 34 (5), 18–23.
  16. Suzdal', V. S. (2011). Optimization of synthesis control problem for crystallization processes. Eastern-European Journal of Enterprise Technologies, 6/3 (54), 41–44. Available at: http://journals.uran.ua/eejet/article/view/2247/2051
  17. Diligenskij, N. V., Dymova, L. G., Sevast'janov, P. V. (2004). Nechetkoe modelirovanie i mnogokriterial'naja optimizacija proizvodstvennyh sistem v uslovijah neopredelennosti: tehnologija, jekonomika, jekologija. Moscow: Mashinostroenie-1, 397.
  18. Roffel, B., Chin, P. F. (1991). Fuzzy control of a polymerization reactor. Hydrocarbon Processing 6, 47–50.
  19. Danilova, N. V. (2010). Primenenie metoda nechetkih s-srednih dlja postroenija funkcij prinadlezhnosti parametrov tehnologicheskogo processa. Sb. nauchn. tr. seminara «Innovacionnye tehnologii, modelirovanie i avtomatizacija v metallurgii». Sankt-Peterburg, 11–12.
  20. Trufanov,I.D., Chumakov, K. I., Ljutyj, A. I. (2007). Matematicheskoe modelirovanie i opytno-jeksperimental'noe issledovanie jenergojeffektivnosti jelektrotehnologicheskogo kompleksa moshhnoj dugovoj staleplavil'noj pechi. Eastern-European Journal of Enterprise Technologies, 4/1 (28), 64–69.
  21. Trufanov,I.D., Metel'skij, V. P., Chumakov, K. I., Lozinskij O. Ju., Paranchuk Ja. S. (2008). Jenergosberegajushhee upravlenie jelektrotehnologicheskim kompleksom kak baza povyshenija jenergojeffektivnosti metallurgii stali. Eastern-European Journal of Enterprise Technologies, 6/1 (36), 22–29.
  22. Tymchuk, S. A., Miroshnyk, A. A. (2014). Quality assessment of power in distribution networks 0.38/0.22 kV in the fuzzy form. Global Science and Innovation. Materials of the II international scientific conference Vol. II. Chicago, USA, 288–299.
  23. Kuznetsov, V. G., Kurinnyiy, E. G., Lyutyiy, A. P. (2005). Elektromagnitnaya sovmestimost: nesimmetriya i nesinusoidalnost napryazheniya.Donetsk: «Donbass», 249.
  24. Elektricheskaya energiya (1997). Sovmestimost tehnicheskih sredstv elektromagnitnaya. Normyi kachestva elektricheskoy energii v sistemah elektrosnabzheniya obschego naznacheniya: GOST 13109–97. Moscow: Gosstandart RF, 33.

Published

2015-02-23

How to Cite

Тимчук, С. О., & Мирошник, А. А. (2015). Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks. Eastern-European Journal of Enterprise Technologies, 1(8(73), 4–10. https://doi.org/10.15587/1729-4061.2015.36003

Issue

Section

Energy-saving technologies and equipment