The method of a three-dimensional integral functional in a study of multiparameter objects of control and management

Authors

  • Йосип Іванович Стенцель East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine
  • Олена Іванівна Проказа East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-6035-3057
  • Костянтин Анатолійович Літвінов East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.36653

Keywords:

technology, control, management, transfer, rheology, transition, diffusion, convection, extreme, optimization

Abstract

Technological processes of the chemical, oil processing, food processing, and other industries are based on transferring the impulses of mass, energy, and movement from their source to a rheological transition zone responsible for substance conversion. The processes are researched on the basis of the theory of rheological transitions and the zero gradient method. We have proved that such technological processes can be described by means of the Dirac integral impulse delta-functions(δ functions), which allows solving nonlinear equations of energy and mass transfer in an analytical form. We have revealed that such technological processes are characterized by three interrelated coordinates: incoming heat or material flows, time during which substances stay in the processing facility, and output coordinates that determine productivity and quality of the manufactured products. The multiparameter processes are characterized by initial coordinates, among which there exist extreme dependencies. The extremes used to be typically determined by equations of two-dimentional criteria that could not secure an optimal technological process on the basis of input and output coordinates and the time during which substances stay in the processing facility. We have proved that optimal correlation between the parameters can be achieved on the basis of a three-dimensional integral functional the extremes of which are the functions of the Lagrange, Pontryagin and Euler criteria. We have suggested analytical equations for calculating extremes of the technological process, which facilitates maximum efficiency of the process at minimum energy and material expenses.

Author Biographies

Йосип Іванович Стенцель, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

Professor, Doctor of technical sciences, head of the department

The department of computer-integrated control systems

Олена Іванівна Проказа, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

Candidate of technical science, Associate professor

The department of computer-integrated control systems

Костянтин Анатолійович Літвінов, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

PhD student

The department of computer-integrated control systems

References

  1. Stencel', J. І., Porkujan, O. V., Prokaza, O. І. (2010). Osnovi teorіi bagatoparametrichnih ob’ektіv keruvannja z reologіchnimi perehodami. Naukovij zhurnal «Tehnologіchnі kompleksi», 2, 46–51.
  2. Porkujan, O. V., Stencel', J. І., Prokaza, O. І. (2010). Reologіchnі modelі tehnologіchnogo kontrolju parametrіv z vnutrіshnіmi zv’jazkami u virobnictvі amіachnoi selіtri. Zbіrnik naukovih prac' «Vіsnik nacіonal'nogo tehnіchnogo unіversitetu «Harkіvs'kij polіtehnіchnij іnstitut». «Elektroenergetika ta peretvorjuval'na tehnіka», 12, 21–28.
  3. Stentsel, І., Porkuyan, O., Prokaza, E. (2012). Researches of the system of neutralization process control intheproduction of ammonium nitrate on thebasis of rheological transitions principles. An International journal on motorization, vechicle, operation, energy efficiency and mechanical engineering “TEKA Commission of motorization and Energetics in Agriculture, 12 (4), 274–278.
  4. Frank-Kameneckij, D. A. (1987). Diffuzija i teploperedacha v himicheskoj kinetike. Moscow: Nauka, 502.
  5. Astrom, K., Wittenmark, B. (1989). Adaptive Control. Addison-Wesley, 123.
  6. Taganov, I. N. (1979). Modelirovanie processov masso- i jenergoperenosa. Lviv: Himija, 203.
  7. Vajnberg, A. M. (2009). Matematicheskoe modelirovanie processov perenosa. Reshenie nelinejnyh kraevyh zadach. Moskva-Ierusalim, 210.
  8. Willis, M. J., Tham, M. T. (1993). Advanced Process Control. Available at: http://lorien.ncl.ac.uk/ming/advcontrl/apc.htm
  9. Pіstun, E., Matіko, F., Roman, V., Stecenko, A. (2014). Doslіdzhennja pohibki ul'trazvukovih vitratomіrіv za umov spotvorenoї strukturi potoku na osnovі CFD-modeljuvannja. Metrologіja ta priladi. Naukovo-virobnichij zhurnal, 4 (48), 13–23.
  10. Stencel', J. І., Porkujan, O. V., Prokaza, O. І. (2011). Doslіdzhennja vimіrjuval'nogo kontrolju tehnologіchnih parametrіv pri reologіchnih peretvorennjah hіmіchnih procesіv. Zbіrnik naukovih prac' «Vіsnik nacіonal'nogo tehnіchnogo unіversitetu «Harkіvs'kij polіtehnіchnij іnstitut». «Elektroenergetika ta peretvorjuval'na tehnіka», 19, 31–36.
  11. Gorazdovskij, T. J. (1986). Domeny reologicheskih polej. DAN SSSR, 287 (5), 1118–1122.
  12. Stencel', J. І. (1992). Fotokolorimetrichnі gazoanalіzatori: Monografіja. Kiev: NMK VO, 120.
  13. Pilipenko, V. (2012). Matematical model-building of reological and thermodynamical processes in modified concrete mix at vibro impact compact method of compression. TEKA Commission of Motorization and Energetics in Agriculture, 12 (4), 204–209.
  14. Tresch, T., Gruber, P., Staubli, T. (2006). Comparison of integration methods for multipath acoustic discharge measurements. Paper presented at the Proceedings of the 6th International Conference on IGHEM. Portland Oregon, USA. Available at: http:/www.ighem.org
  15. Motkun, V., Goncharov, S., Pikilnyak, A., Krivenko, A. (2012). Iron ore benefikation processes optimization. TEKA Commission of Motorization and Energetics in Agriculture, 12 (4), 162–166.
  16. Zajcev, G. F. (1980). Teorija avtomaticheskogo upravlenija i regulirovanija. Kiev: Vishha shk. Golovnoe izd-vo, 431.
  17. Staubli, T., Luscher, B., Widmen, M. (2007). CFD optimized acoustic flow measurement and laboratory verification. Paper presented at the International Conference HIDRO, Granada, Spain.
  18. Turkowski, M., Szuflenski, P. (2013). New criteria for the experimental validation of CFD simulations. Flow Measurement and Instrumentation, 34 (1), 1–10. doi: 10.1016/j.flowmeasinst.2013.07.003

Published

2015-02-27

How to Cite

Стенцель, Й. І., Проказа, О. І., & Літвінов, К. А. (2015). The method of a three-dimensional integral functional in a study of multiparameter objects of control and management. Eastern-European Journal of Enterprise Technologies, 1(2(73), 36–43. https://doi.org/10.15587/1729-4061.2015.36653