Development of methodology for designing aerodynamic spacecraft de-orbit systems

Authors

  • Александр Сергеевич Палий Institute of technical mechanics National academy of science of Ukraine and Statement space agency of Ukraine Leshko-Popelya street, Dnipropetrovsk, Ukraine, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.36662

Keywords:

debris, spacecraft, de-orbit, system design, aerodynamic system

Abstract

A methodology for designing aerodynamic systems that implements an iterative approach for calculating the parameters and evaluating the effectiveness of the system at various stages of its design was proposed. According to the recommendations of the Inter-Agency Space Debris Coordination Committee, the lifetime of the worked-out spacecraft in orbit is necessary to limit to the period of 25 years. One of the effective spacecraft de-orbit systems is the aerodynamic de-orbit system.

When developing this class of systems it is necessary to calculate the parameters and evaluate the effectiveness of the system at various stages of its design. The developed methodology allows to evaluate the efficiency of using the aerodynamic system, depending on the given period of ballistic existence of the spacecraft and determine the possibility of its use taking into account size limitations and the impact of space factors. This methodology lies in implementing the method of successive approximations. Delimitation of applicability and preliminary evaluation of the effectiveness of using aerodynamic spacecraft de-orbit systems is performed in the first approximation. Parameters of the system, taking into account the mass of air pressurization systems and aerodynamic system storage on the spacecraft board are calculated in the second approximation. The active lifetime of the system under the influence of space factors is calculated and its parameters are optimized in the third approximation.

This methodology can be used when developing technical specifications for the design of the aerodynamic spacecraft de-orbit system.

Author Biography

Александр Сергеевич Палий, Institute of technical mechanics National academy of science of Ukraine and Statement space agency of Ukraine Leshko-Popelya street, Dnipropetrovsk, Ukraine, 49005

Junior Researcher

The department of system analysis and control problems

References

  1. Satellite Box Score. (2014). The Orbital Debris Quarterly News, 18, 8.
  2. IADC Space debris mitigation guidelines (2003). Prepared by the IADC Steering Group and WG4 members. Available at: http://www.iadc-online.org/index.cgi?item=docs_pub
  3. Liou, J.-C., Anlikumar, A. K., Bastida Virgili, B., Hananada, T. (2013). Stability of the future LEO environment – an IADC comparison study. Sixth European conference on space debris, ESOC, Darmstadt, Germany, 38.
  4. Paliy, A. S. Metodyi i sredstva uvoda kosmicheskih apparatov s rabochih orbit (sostoyanie problemyi). Tehnicheskaya mehanika, 1, 94–102.
  5. Nock, K. T., Gates, K. L., Aaron, K. M., and McRonald, A. D. (2010). Gossamer Orbit Lowering Device (GOLD) for Safe and Efficient De-Orbit, AIAA Astrodynamics Specialists Conference. doi: 10.2514/6.2010-7824
  6. Nock, K. T., McRonald, A. D., Aaron, K. M. U.S. Patent No. 6,830,222.
  7. Roberts, P. C. E., Bowling, T. S., Hobbs, S. E (2002). MUSTANG: A technology demonstrator for formation flying and distributed systems technologies in space. 5th conference Dynamics and control of systems and structures in space, Kings College, Cambridge. Available at: https://dspace.lib.cranfield.ac.uk/bitstream/1826/881/1/MUSTANG-formation%20flying%20in%20space-2002.pdf.
  8. Bergsma, O. K. (2007). iDod : Development of a generic inflatable de-orbit device for cubesats : technical report. Delft : Delft University of technology. Available at : http://repository.tudelft.nl/assets/uuid:49d86db1-8909-4464-af1b-fe1655c9c376/ae_maessen_2007.pdf.
  9. Harkness, P. G. (2006). An aerostable drag-sail devise for the deorbit and disposal sub-tonne low Earth orbit spacecraft. Cranfield University, Cranfield, Bedfordshire, United Kingdom.
  10. Maesen, D. S., van Breukelen, E. D., Zandbergen, B. T. C., Bergsma, O. K. (2007). Development of a generic inflatable de-orbit device for cubesats. 58th International astronautic congress.
  11. Peypuda, V., Le Kul., O. (2011). Patent RU 2,435,711. Deployable airfoil autobrake satellite.
  12. Dupuy, C., Le Couls, O. (2010). Gossamer technology to deorbit LEO non-propulsion fitted satellite. 40th Aerospace mechanisms symposium, NASA Kennedy space center.
  13. Paliy, A. S. Ob effektivnosti ustroystva aerodinamicheskogo tormozheniya dlya uvoda kosmicheskih apparatov. Tehnicheskaya mehanika, 4, 82–90.
  14. O’Connor, B. (2008). Handbook for limiting space debris : NASA handbook. Washington, DC : NASA, 174.
  15. Klinkrad, H. (2006). Space debris: Models and risk analysis. Chichester, UK: Praxis Publishing Ltd., 172.
  16. Jenkins, C. H. M. (2001). Gossamer spacecraft : membrane and inflatable structures and technology for space Applications. Reston, USA : AIAA, 586.
  17. Freeland, R., Bard, S., Veal, G. (1996). Inflatable antenna technology with preliminary shuttle experiment results and potential applications. 6th Annual Meeting and Symposium of the Antenna Measurement Techniques Association. Seattle, Washington. Available at: http://www.lgarde.com/assets/content/files/publications/aiaa-98-2104.pdf
  18. Standards Russia. (2000). Alyuminiy i splavyi alyuminievyie deformiruemyie (GOST 4787-97). Minsk: Mezhgosudarstvennyiy sovet po standartizatsii, metrologii i sertifikatsii, 20.
  19. Yavorskiy, B. M., Detlaf, A. A., Lebedev, A. K. (2006). Spravochnik po fizike dlya inzhenerov i studentov vuzov. Moskva : OOO «Izdatelstvo Oniks», OOO «Izdatelstvo «Mir i Obrazovanie», 1056.

Published

2015-02-25

How to Cite

Палий, А. С. (2015). Development of methodology for designing aerodynamic spacecraft de-orbit systems. Eastern-European Journal of Enterprise Technologies, 1(9(73), 11–15. https://doi.org/10.15587/1729-4061.2015.36662

Issue

Section

Information and controlling system