Simulation model of the technological complex of charge preparation for sinter production

Authors

  • Борис Борисович Зобнин Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144, Russian Federation
  • Олег Александрович Горбенко Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144, Russian Federation https://orcid.org/0000-0002-2065-9414
  • Игорь Анатольевич Ажипа Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144, Russian Federation https://orcid.org/0000-0001-9203-2744
  • Роман Андреевич Яковлев Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144, Russian Federation https://orcid.org/0000-0003-2850-7658

DOI:

https://doi.org/10.15587/1729-4061.2015.37273

Keywords:

simulation model, charge quality stabilization, ontology, multiagent approach

Abstract

A simulation model of the technological complex of charge preparation for sinter production was developed.This approach stems from the fact that the dimension of tasks and non-formalizability of objects do not allow to use rigorous mathematical methods.Integrated debugging and testing of the system on the real object is impossible without the simulation model considering the insecurity of the artificial creation of emergency situations.Using the developed simulation model, the factors, affecting the charge quality stabilization were investigated.It was proposed to build a domain model using ontology that allows to avoid contradictions in determining the type of the class hierarchy. Also, it was proposed to use the original identification procedure of weighted average values of the content of chemical elements and oxides in the homogenization tank, as well as the multiagent approach for simulating emergency situations.

As a result of the research, it was found that the characteristics of the formed stack from various types of disruptions in the homogenization unit.Estimates of trends in the monitored parameters at the homogenization unit synchronization failures were obtained, and contributions of the change of technological processes to the occurrence and magnitude of the anomalous zones in the stack were defined.Using the resulting model allows to solve the stack formation management problem.

Author Biographies

Борис Борисович Зобнин, Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144

Docrot of Technical Science, Professor

Department of Informatics

Олег Александрович Горбенко, Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144

graduate student

Department of Informatics

Игорь Анатольевич Ажипа, Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144

graduate student

Department of Informatics

Роман Андреевич Яковлев, Ural State Mining University 30 Kuybysheva str, Russian Federation, 620144

Department of Informatics

References

  1. Dudnikov, E. E., Codikov, Ju. M. (1979). Tipovye zadachi operativnogo upravlenija nepreryvnym proizvodstvom. Moscow: Jenergija, 272.
  2. Metals Technologies. Available at: http://www.industry.siemens.com/verticals/metals-industry/en/metals/pages/home.aspx
  3. Amelina, N., Granichin, O., Kornivetc, A. (2013). Local voting protocol in decentralized load balancing problem with switched topology, noise, and delays. 52nd IEEE Conference on Decision and Control, 4613–4618. doi:10.1109/cdc.2013.6760611
  4. Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O., Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology & Evolution, 23 (2), 87–94. doi:10.1016/j.tree.2007.10.009
  5. Liu, R., Gourley, S. A., DeAngelis, D. L., Bryant, J. P. (2011). Modeling the dynamics of woody plant–herbivore interactions with age-dependent toxicity. Journal of Mathematical Biology, 65 (3), 521–552. doi:10.1007/s00285-011-0470-0
  6. DeAngelis, D. L., Ju, S., Liu, R., Bryant, J. P., Gourley, S. A. (2011). Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability. Theoretical Ecology, 5 (3), 445–456. doi:10.1007/s12080-011-0135-z
  7. Wang, Y., DeAngelis, D. L., Holland, J. N. (2011). Uni-directional consumer–resource theory characterizing transitions of interaction outcomes. Ecological Complexity, 8 (3), 249–257. doi:10.1016/j.ecocom.2011.04.002
  8. Zobnin, B. B., Gorbenko, O. A., Sorokin, S. A. (2015). Tehnologii preobrazovanija nanopylej v nanokompozity. Novye ogneupory, 15, 57–60.
  9. Zobnin B. B., Surin A. A., Golovyrin S. S., Korotkov V. I. (2008). Patent na izobretenie N 2366495 po zajavke 2008119863/15(023282). Sposob upravlenija processom smeshivanija sypuchih komponentov. – Data podachi zajavki 19.05.08
  10. Wilensky, U. (2011). NetLogo: A Simple Environment for Modeling Complexity. Center for Connected Learning and Computer-Based Modeling Northwestern University, Evanston, Illinois, Article 12.
  11. Zobnin, B., Yendiyarov, S., Petrushenko, S. (2012). Expert system for sintering process control based on the information about solid-fuel flow com Positio. Proceedings of Word Academy of Science, Engineering and Technology, France, 68, 861–868.
  12. Hebeler, J., Fisher, M., Blace, R. (2009). Semantic Web Programming. USA.: Wiley Publishing, 650.
  13. Liyang, Y. (2011). A Developer’s Guide to the Semantic Web. Springer-Verlag, USA, New York, 608. doi: 10.1007/978-3-642-15970-1
  14. Allemang, D., Hendler, J. (2011). Semantic Web for the Working Ontologist. 2nd edition. Waltham, 354.
  15. Segaran, T., Taylor, J. (2009). Programming the Semantic Web. USA, O'Reilly, 302.

Published

2015-02-25

How to Cite

Зобнин, Б. Б., Горбенко, О. А., Ажипа, И. А., & Яковлев, Р. А. (2015). Simulation model of the technological complex of charge preparation for sinter production. Eastern-European Journal of Enterprise Technologies, 1(9(73), 40–45. https://doi.org/10.15587/1729-4061.2015.37273

Issue

Section

Information and controlling system