Methods for recovering the dislocations contour line of gallium arsenide wafer of digital image

Authors

  • Андрей Николаевич Самойлов Kremenchug National University named after Mikhail Ostrogradskii Pershotravneva 20, Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0001-9178-6202
  • Игорь Васильевич Шевченко Kremenchug National University named after Mikhail Ostrogradskii Pershotravneva 20, Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0003-3009-8611

DOI:

https://doi.org/10.15587/1729-4061.2015.43326

Keywords:

dislocation, etching pits, contour line recovering, gallium arsenide, digital image

Abstract

The production volume growth of high-speed semiconductor devices based on gallium arsenide determines the necessity of semiconductor wafers dislocations control effectiveness increase.

In the article the methods of etching pits contour  dislocation of gallium arsenide wafers recover have been suggested. Pretreatment performs binarization of the plate surface images highlighting the contours of the present parts of the image. The improved method of  the width of the contour line determination  defines the width of the line bounds of etch pits in suspected dislocation taking into consideration the variability of their reflection in the binarized image. The current width of the contour line is compared to the standard line width of dislocation contour.

The recovering method of contour line determines the suggested bounds of dislocations monitoring changes in the direction of the dislocation contour line in the plane of the plate image based on the value of the dislocation contour line width. The recovering method of contour line branching takes into account various options of adjacency line and determines the direction of further recovering of etch pits dislocation contour lines. It has been given a stepwise description of the methods.

Author Biographies

Андрей Николаевич Самойлов, Kremenchug National University named after Mikhail Ostrogradskii Pershotravneva 20, Kremenchuk, Ukraine, 39600

graduate student

Department of Information and Control Systems 

Игорь Васильевич Шевченко, Kremenchug National University named after Mikhail Ostrogradskii Pershotravneva 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Information and Control Systems

References

  1. Samoilov, A. N. (2013). Metody poluchenija konturov na cifrovyh rastrovyh izobrazhenijah s nechjotkim otobrazheniem dislokacij v plastinah GaAs. Kompiuterno-іntegrovanі tehnologії: osvіta, nauka, virobnictvo, 63–69.
  2. Samoilov, A. N. (2014). Issledovanie mediannoj filtracii binarizovannyh konturov dislokacij plastiny GaAs na rastrovyh cifrovyh izobrazhenijah. Materіaly І Vseukraїns'koї naukovo-praktichnoї konferencії «ІT-Perspektiva», 10–11.
  3. Samoilov, A. N. (2012). Sravnenie effektivnosti globalnyh metodov binarizacii rastrovyh cvetnyh izobrazhenij. Vestnik KrNU imeni Mihaila Ostrogradskogo, 4 (75), 49–54.
  4. Samoilov, A. N., Shevchenko, I. V. (2013). Metod obnaruzhenija linij konturov v jarkostnyh perepadah predpolagaemyh granej binarizovannogo izobrazhenija sledov dislokacij na plastinah GaAs. Avtomatizirovannye sistemy upravlenija i pribory avtomatiki, 165, 22–27.
  5. Smith, S. M., Brady, J. M. (1997). SUSAN – A new approach to low level image processing. International Journal of Computer Vision, 34, 45–78.
  6. Rosten, E., Drummond, T. (2006). Machine learning for high-speed corner detection. Proceedings of the European Conference on Computer Vision, 430–443. doi: 10.1007/11744023_34
  7. Harris, C., Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference, 147–151. doi: 10.5244/c.2.23
  8. Schmid, C., Mohr, R., Bauckhage, C. (1998). Comparing and evaluating interest points. Proceedings of the International Conference on Computer Vision, 230–235. doi: 10.1109/iccv.1998.710723
  9. Schmid, C., Mohr, R., Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal of Computer Vision, 2, 151–172.
  10. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60 (2), 91–110. doi: 10.1023/b:visi.0000029664.99615.94
  11. Bay, H., Tuytelaars, T., Van Gool, L. (2006). SURF: Speeded up robust features H. Bay. Proceedings of the European Conference on Computer Vision, 404–417. doi: 10.1007/11744023_32
  12. Ablamejko, S. V., Lagunovskij, D. M. (2000). Obrabotka izobrazhenij: tehnologija, metody, primenenie. Minsk: Amalfeja, 304.
  13. Duda, R., Hart, H. (1973). Pattern classification and scene analysis. New York: John Wiley & Sons, 507.
  14. Freeman, H., Davis, L. S. (1977). A corner finding algorithm for chain coded curves. IEEE Transactions on Computers, 26 (3), 297–303. doi: 10.1109/tc.1977.1674825
  15. Bribiesca, E., Guzman, A. (1978). Shape description and shape similarity for two dimensional regions. Paper presented at the 41h International Conference on Pattern Recognition, Kyoto, Japan.
  16. Gonzalez, R., Woods, R. (2002). Digital image processing. Prentice Hall: Pearson Education, 616.
  17. Epshtein, B. (2009). Detecting Text in Natural Scenes with Stroke Width Transform. Microsoft Corporation. Available at: http://research.microsoft.com/pubs/149305/1509.pdf (Last accessed: 23.12.12).
  18. Pratt, W. (1978). Digital Image Processing. New York: John Wiley & Sons, 781.

Published

2015-06-17

How to Cite

Самойлов, А. Н., & Шевченко, И. В. (2015). Methods for recovering the dislocations contour line of gallium arsenide wafer of digital image. Eastern-European Journal of Enterprise Technologies, 3(5(75), 8–16. https://doi.org/10.15587/1729-4061.2015.43326

Issue

Section

Applied physics