Study of the possibilities of using the method structural engineering of multilayer periodic systems to increase the mechanical properties of the coating, used as a protective on the details of the steam turbine aggregates

Authors

  • Олег Валентинович Соболь National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5156-7371
  • Виталий Владимирович Дмитрик National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6266-6081
  • Николай Андреевич Погребной National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-1689-3830
  • Григорий Иванович Ищенко OJSC "Turboatom" pr. Moscow, 199, Kharkov, Ukraine, 61037, Ukraine
  • Наталия Владимировна Пинчук National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0954-2266
  • Андрей Александрович Мейлехов National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5156-7371

DOI:

https://doi.org/10.15587/1729-4061.2015.43668

Keywords:

a steam turbine aggregate, a multilayer coating, nitride, metal, texture, hardness, abrasion resistance

Abstract

The technological conditions and structural condition necessary to obtain high mechanical properties of plasma-vacuum multilayer coatings built on a combination of solid (nitride) and plastic (metal) layers were considered. The advantages of using such a composition as a surface protective layer on parts of steam turbine units were analyzed. It is established that a negative bias potential applied to the substrate during deposition process leads to increased compressive stresses and the formation of preferential orientation of the crystallites in the layers of TiN with [111] axis. As a result there is an increase of hardness from 26 GPa (Us = -70 V) to 36 GPa (Us = -230 V). Using a structured approach, defined and justified optimal layer thickness Ti (30 nm) and TiN (300 nm), providing a combination of high hardness and high abrasion resistance of coatings of the multilayer TiN/Ti.

Author Biographies

Олег Валентинович Соболь, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

Professor, Doctor of Physical and Mathematical Sciences, Head of Department

Department of Materials Science

Виталий Владимирович Дмитрик, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

Professor, Doctor of Technical Sciences, Head of Department

Department of welding

Николай Андреевич Погребной, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

National Technical University "Kharkiv Polytechnic Institute"

str. Frunze, 21, Kharkov, Ukraine, 61002

Григорий Иванович Ищенко, OJSC "Turboatom" pr. Moscow, 199, Kharkov, Ukraine, 61037

Chief Engineer

Наталия Владимировна Пинчук, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

graduate student

Department of Materials Science

Андрей Александрович Мейлехов, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

graduate student

Department of Materials Science

References

  1. Ducros, C., Sanchette, F. (2006). Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surface and Coatings Technology, 201 (3-4), 1045–1052. doi: 10.1016/j.surfcoat.2006.01.029
  2. Zeng, X. T., Zhang, S., Sun, C. Q., Liu, Y. C. (2003). Nanometric-layered CrN/TiN thin films: mechanical strength and thermal stability. Thin Solid Films, 424 (1), 99–102. doi: 10.1016/s0040-6090(02)00921-5
  3. Martínez, E. (2003). Wear behavior of nanometric CrN/Cr multilayers. Surface and Coatings Technology, 163-164, 571–577. doi: 10.1016/s0257-8972(02)00664-3
  4. Chim, Y. C., Ding, X. Z., Zeng, X. T., Zhang, S. (2009). Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 517 (17), 4845–4849. doi: 10.1016/j.tsf.2009.03.038
  5. Major, L., Morgiel, J., Major, B., Lackner, J. M., Waldhauser, W., Ebner, R. et. al. (2006). Crystallographic aspects related to advanced tribological multilayers of Cr/CrN and Ti/TiN types produced by pulsed laser deposition (PLD). Surface and Coatings Technology, 200 (22-23), 6190–6195. doi: 10.1016/j.surfcoat.2005.11.021
  6. Wieciński, P., Smolik, J., Garbacz, H., Kurzydłowski, K. J. (2014). Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surface and Coatings Technology, 240, 23–31. doi: 10.1016/j.surfcoat.2013.12.006
  7. Gecov, L. B. (2010). Materialy i prochnost' detalej gazovyh turbin. V dvuh knigah. Rybinsk: OOO « Izdatel'skij dom «Gazoturbinnye tehnologii», 612.
  8. Xiang, Y., Hua, M., Cheng-biao, W., Zhi-qiang, F., Yang, L. (2007). Investigation of Ti/TiN multilayered films in a reactive mid-frequency dual-magnetron sputtering. Applied Surface Science, 253 (7), 3705–3711. doi: 10.1016/j.apsusc.2006.08.002
  9. Juergen, M. L. (2007). Industrially-scaled room-temperature pulsed laser depositionof Ti-TiN multilayer coatings. Journal of Physics: Conference Series 59, 16–21. doi: 10.1088/1742-6596/59/1/004
  10. Azarenkov, N. A., Sobol', O. V., Beresnev, V. M., Pogrebnyak, A. D., Litovchenko, S. V., Ivanov, O. N. (2012) Materialovedenie neravnovesnogo sostoyaniya modifitsirovannoy poverkhnosti. Sumy: Sumskoy gosudarstvennyy universitet, 683.
  11. Palatnik, L. S., Fuks, M. Ya., Kosevich, V. M. (1972). Mekhanizm obrazovaniya i substruktura kondensirovannykh plenok. Moscow: Nauka, 320.
  12. Noyan, I. C., Cohen, J. B. (1987). Residual stress measurement by diffraction and interpretation. New York: Springer-Verlag, 350.
  13. Genzel, C., Reinmers, W. (1998). A study of x-ray residual-stress gradient analisys in thin-layers with strong filer texture. Phys. Stat. Solidi: A-Applied Research, 166 (2), 751–762. doi: 10.1002/(sici)1521-396x(199804)166:2<751::aid-pssa751>3.0.co;2-l
  14. Gergaud, P., Labat, S., Thomas, O. (1998). Limits of validity of the crystallite group method in stress determination of thin film structures. Thin Solid Films, 319 (1-2), 9–15. doi:10.1016/s0040-6090(97)01100-0
  15. Ignatovich, S. R., Zakiev, I. M. (2011). Universal'nyj mikro-nanoindenter «Mikron-gamma». Zavodskaja laboratorija. Diagnostika materialov, 77 (1), 61–67.
  16. Rutherford, K. L., Hutchings, I. M. (1996). A micro-abrasive wear test, with particular application to coated systems. Surface and Coatings Technology, 79(1-3), 231–239. doi: 10.1016/0257-8972(95)02461-1
  17. Caicedo, J. C., Amaya, C., Yate, L., Nos, O., Gomez, M. E., & Prieto, P. (2010). Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system. Materials Science and Engineering: B, 171 (1-3), 56–61. doi: 10.1016/j.mseb.2010.03.069
  18. Sobol’, O. V. (2011). Control of the structure and stress state of thin films and coatings in the process of their preparation by ion-plasma methods. Physics of the Solid State, 53 (7), 1464–1473. doi: 10.1134/s1063783411070274
  19. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Gorban’, V. F., Volosova, M. A., Aleshin, S. V., Stolbovoi, V. A. (2012). Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Met Sci Heat Treat, 54(3-4), 195–203. doi:10.1007/s11041-012-9481-8

Published

2015-06-17

How to Cite

Соболь, О. В., Дмитрик, В. В., Погребной, Н. А., Ищенко, Г. И., Пинчук, Н. В., & Мейлехов, А. А. (2015). Study of the possibilities of using the method structural engineering of multilayer periodic systems to increase the mechanical properties of the coating, used as a protective on the details of the steam turbine aggregates. Eastern-European Journal of Enterprise Technologies, 3(1(75), 50–56. https://doi.org/10.15587/1729-4061.2015.43668

Issue

Section

Mechanical engineering technology