Improving the efficiency of the apparatus with counter swirling flows for the food industry

Authors

  • Марина Юріївна Савченко-Перерва Sumy national agrarian University Str. G. Kondratiev 160, Sumy, Ukraine, 40030, Ukraine https://orcid.org/0000-0001-8813-9303
  • Олександр Родіонович Якуба Sumy national agrarian University Str. G. Kondratiev 160, Sumy, Ukraine, 40030, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.43785

Keywords:

dust separator, angular momentum, flow rates, improvement, efficiency, hydraulic losses

Abstract

The tendency for increased process performance, reduced sizes of plants, accelerated processes occurring in them led to the broader study of dust separation equipment concerning the mathematical modeling of the dust particle separation process in the system of counter swirling flows (CSF) as well as the areas of their structural improvement. To eliminate the inhibitory effect of angular momentum in the primary swirler and align relationships with gas flow rates, the angular momentum equation for the new ACSF (apparatus with counter swirling flows), which allowed to find a place for structural improvement was derived.

The dependencies of velocity fields of gas flows and overall efficiency of the apparatus with counter swirling flows before and after the improvement using previously obtained methods for calculating the flow patterns were proposed. The methodology for calculating fractional efficiency for each layer in the apparatus: external, internal and overall effectiveness was developed.

The Walter Bart method for calculating the resistance of an experimental model of the apparatus with counter swirling flows was used. Based on the research, summarized and optimal calculations for finding ACSF pressure losses since it is one of the main characteristics in the energy efficiency evaluation were proposed.

Author Biographies

Марина Юріївна Савченко-Перерва, Sumy national agrarian University Str. G. Kondratiev 160, Sumy, Ukraine, 40030

Assistant

The department of engineering technology of food production

Олександр Родіонович Якуба, Sumy national agrarian University Str. G. Kondratiev 160, Sumy, Ukraine, 40030

Professor, doctor of technical Sciences, head of the department

The department of engineering technology of food production

References

  1. Pavlyshchev, M. Y., Feshenko V. Z. (1985). Sposob ochystky hazopylevoho potoka y ustroistvo dlia eho osushchestvlenyia. A. s. №1171094 (SSSR). B 04 C. Buil.29.
  2. Belousov, A. S. (1996). Struktura vstrechnykh zakruchennykh potokov y raschet efektyvnosty tsentrobezhnoho razdelenyia hazovzvesei. Moscow: MTI, 227.
  3. Sazhyn, B. S. (1995). Vykhrevye pyleulovytely. Khymyia, 144.
  4. Suhak, E. V.(1999). Modelyrovanye y yntensyfykatsyia protsessov ochystky promyshlennykh hazovykh vybrosov v turbulentnykh hazodyspersnykh potokakh. Krasnoiarsk, 46.
  5. Belousov, A. S., Sazhyn, B. S., Otrubiannykov, E. V. (2008). Struktura potokov v apparatakh so vzveshennym sloem. Khymycheskaia tekhnolohyia, 9 (7), 332–336.
  6. Sazhyn, B. S., Kochetkov, L. M., Belousov, A. S. (2008). Uderzhyvaiushchaia sposobnost y struktura potokov v vykhrevykh aparatakh. Teoretycheskye osnovy khym. tekhnolohy, 42 (2), 125–135.
  7. Yakuba, O. R., Kasianchuk, V. V., Savchenko, M. Y. (2008). Udoskonalennia aparativ iz zustrichnymy zakruchenymy potokamy dlia pylovlovlennia. Visnyk SNAU. Naukovyi zhurnal. Seriia: Mekhanizatsiia ta avtomatyzatsiia vyrobnychykh protsesiv, 2 (18), 85–89.
  8. Yakuba, A., Sabadash, S., Savchenko, M. (2009). The investigation and Vorking out of drop- and dust catchers for compressor station . UK "International Conference on Compressors and their Systems". Institution of mechanical engineers. City University London, 421–431.
  9. Smulskyi, Y. Y. (1992). Aerodynamyka y protsessy v vykhrevykh kamerakh. VO "Nauka", 301.
  10. Belousov, A., Sazhyn, B. (2003). Application of Guided Vortex Breakdown for Drying and Separation of the Powder in Vortex Cyclone. Proceeding of The Second Nordic Drying Conference (NDC-03). Penmark, 1–5.
  11. Koval, V. P. (1989). Sovershenstvovanye enerhetycheskykh apparatov s vykhrevoi kameroi. Dnepropetrovsk, 358.
  12. Barth, W., Leineweber, L. (1964). Berechnung und Auslegung von Zyklonabscheidern. Staub, 24, 41–52.
  13. Azarov, V., Domchenko, B., Koshkarev, S. (1999). Vykhrevoi pyleulovytel. Patent na yzobretenye RUS 2124384.
  14. Azarov, V. N. (2004). Kompleksnaia otsenka pylevoi obstanovky y razrabotka mer po snyzhenyiu zapylennosty vozdushnoi sredy promyshlennykh predpryiatyi. Rostov-na-Donu, 356.
  15. Maksfyld, B. (2010). Mathcad v ynzhenernykh raschetakh . KORONA, 304.
  16. Halich, R. V. (2014). Vplyv vykhidnykh prystroiv na hidrodynamiku i efektyvnist vykhrovykh pylovlovliuvachiv. Sumy,152.

Published

2015-06-29

How to Cite

Савченко-Перерва, М. Ю., & Якуба, О. Р. (2015). Improving the efficiency of the apparatus with counter swirling flows for the food industry. Eastern-European Journal of Enterprise Technologies, 3(10(75), 43–48. https://doi.org/10.15587/1729-4061.2015.43785

Issue

Section

Technology and Equipment of Food Production